- 2021-05-27 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2020高中物理 第一章 碰撞与动量守恒 动量守恒定律的应用(碰撞)习题(提高篇)教科版选修3-5
动量守恒定律的应用(碰撞) 一、选择题 1.质量为M和m0的滑块用轻弹簧连接,以恒定的速度v沿光滑水平面运动,与位于正对面的质量为m的静止滑块发生碰撞,如图所示,碰撞时间极短,在此过程中,下列哪个或哪些说法是可能发生的?( ). A.M、m0、m速度均发生变化,分别为v1、v2、v3,而且满足(M+m0)v=Mv1+m0v2+mv3 B.m0的速度不变,M和m的速度变为v1和v2,而且满足Mv=Mv1+mv2 C.m0的速度不变,M、m的速度都变为v',且满足Mv=(M+m)v' D.M、m0、m速度均发生变化,M和m0速度都变为v,m速度变为v2,而且满足(M+m)v0=(M+m0)v1+mv2 2.A、B两物体发生正碰,碰撞前后物体A、B都在同一直线上运动,其位移一时间图象(s-t图象)如图中ADC和BDC所示.由图可知,物体A、B的质量之比为( ). A.1∶1 B.1∶2 C.1∶3 D.3∶1 3.三个相同的木块A、B、C从同一高度处自由下落,其中木块A刚开始下落的瞬间被水平飞来的子弹击中,木块B在下落到一定高度时,才被水平飞来的子弹击中.若子弹均留在木块中,则三木块下落的时间tA、tB、tC的关系是( ). A.tA<tB<tC B.tA>tB>tC C.tA=tC<tB D.tA=tB<tC 4.如图所示,木块A和B质量均为2 kg,置于光滑水平面上,B与一轻质弹簧一端相连,弹簧另一端固定在竖直挡板上,当A以4 m/s的速度向B撞击时,由于有橡皮泥而粘在一起运动,那么弹簧被压缩到最短时,具有的弹性势能大小为( ). A.4 J B.8 J C.16 J D.32 J 5.如图所示,有两个质量相同的小球A和B(大小不计),A球用细绳吊起,细绳长度等于悬点距地面的高度,B点静止放于悬点正下方的地面上.现将A球拉到距地面高度为h处由静止释放,摆动到最低点与B球碰撞后粘在起共同上摆,则它们升起的最大高度为( ). 7 A.h/2 B.h C.h/4 D.h/ 6.在光滑水平面上,动能为、动量的大小为的小钢球l与静止小钢球2发生碰撞.碰撞前后球l的运动方向相反.将碰撞后球l的动能和动量的大小分别记为、,球2的动能和动量的大小分别记为、,则必有( ). A.< B.< C.> D.> 7.甲乙两球在水平光滑轨道上向同方向运动,已知它们的动量分别是、,甲从后面追上乙并发生碰撞,碰后乙球的动量变为。则两球质量与间的关系可能是下面的哪几种?( ). A.= B.=2 C.=4 D.=6 8.如图所示,光滑水平面上有大小相同的A、B两球在同一直线上运动.两球质量关系为mB=2mA,规定向右为正方向,A、B两球的动量均为6 kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为-4 kg·m/s,则( ). A.左方是A球,碰撞后A、B两球速度大小之比为2∶5 B.左方是A球,碰撞后A、B两球速度大小之比为1∶10 C.右方是A球,碰撞后A、B两球速度大小之比为2∶5 D.右方是A球,碰撞后A、B两球速度大小之比为1∶10 9.如图所示,具有一定质量的小球A固定在轻杆一端,轻杆另一端挂在小车支架的O点.用手将小球拉至水平,此时小车静止于光滑水平面上,放手让小球摆下与B处固定的油泥碰击后粘在一起,则小车将( ). A.向右运动 B.向左运动 7 C.静止不动 D.小球下摆时,车向左运动后又静止 10.在光滑的水平面上有三个完全相同的小球,它们成一条直线,2、3小球静止,并靠在一起,l球以速度v0射向它们,如图所示.设碰撞中不损失机械能,则碰后三个小球的速度可能值是( ). A. B.v1=0, C.v1=0, D.v1=v2=0,v3=v0 二、填空题 11.质量为M的金属块和质量为m的木块用细线系在一起,以速度V在水中匀速下沉,某一时刻细线断了,则当木块停止下沉的时刻。铁块下沉的速率为___________。(设水足够深,水的阻力不计) 12.如图所示,设车厢的长度为l,质量为M,静止于光滑的水平面上,车厢内有一质量为m的物体以初速度v0向右运动,与车厢壁来回碰撞n次后,静止在车厢中,这时车厢的速度为_______,方向与v0的方向_______. 13.一辆列车的总质量为M,在平直的水平轨道上以速度v匀速行驶,突然最后一节质量为m的车厢脱钩,假设列车所受的阻力与车的重量成正比,机车的牵引力不变,当脱钩的车厢刚好停止运动时,前面列车的速度为_______. 三、解答题: 14.从高处自由下落一个质量为m的物体,当物体下落h高度时突然炸裂成两块,其中质量为m1的一块恰好能沿竖直方向回到开始下落的位置,求刚炸裂时另一块的速度v2. 15.如图所示,长为0.8 m的细绳,一端固定于O点,另一端系一个质量为m1=0.2 kg的球.将球提起使细绳处于水平位置时无初速度释放.当球摆至最低点时,恰与放在光滑水平桌面边缘的质量为m2=1 kg的铁块正碰,碰后小球以2 m/s的速度弹回.若光滑桌面距地面高度h=1.25 m,铁块落地点距桌边的水平距离多大?(g取10 rn/s2) 7 16.如图所示,一轻质弹簧两端连着物体A和B,放在光滑的水平面上,物体A被水平速度为v0的子弹击中,子弹嵌在其中,已知A的质量是B的,子弹的质量是B的,求: (1)物体A获得的最大速度. (2)弹簧压缩量最大时物体B的速度. 【答案与解析】 一、选择题: 1.【答案】B、C 【解析】因为碰撞时间极短,所以m0的速度应该不发生变化,A错,D错.碰后M与m的速度可能相同也可能不同,B对,C对. 2.【答案】C 【解析】由图象知:碰前vA=4 m/s,vB=0.碰后vA'=vB'=1 m/s.由动量守恒可知选项C正确. 3.【答案】C 【解析】木块C做自由落体运动,木块A被子弹击中做平抛运动,木块B在子弹击中瞬间竖直方向动量守恒,mv=(M+m)v',即v'<v,木块B竖直方向速度减小,所以tA=tC<tB. 4.【答案】B 【解析】 A与B碰撞过程动量守恒,有mAVA=(mA+mB)vAB,所以.当弹簧被压缩至最短时,A、B的动能完全转化成弹簧的弹性势能,所以. 5.【答案】C 【解析】本题中的物理过程比较复杂,所以应将过程细化、分段处理.A球由释放到摆到最低点的过程做的是圆周运动,应用动能定理可求出末速度,,所以;A、B的碰撞过程符合动量守恒:mv1=(m+m)v2,所以;对A、B粘在一起共同上摆的过程应用机械能守恒, ,. 6.【答案】 ABD 【解析】 7 7.【答案】C 【解析】动量守恒得:;能量不增加:,, 符合实际:, , 综上: 8.【答案】A 【解析】碰撞后,A球的动量增量为-4 kg·m/s,则B球的动量增量为4 kg·m/s,所以A球的动量为2 kg·m/s,B球的动量为10 kg·m/s,即mAvA=2 kg·m/s,mBvB=10 kg·m/s.且mB=2mA,则.且碰撞后,原来在右边的小球的速度大于在左边小球的速度,故A球在左边.选项A正确. 9.【答案】D 10.【答案】D 【解析】由题设条件,三个球在碰撞过程中总动量和总动能守恒.若各球质量均为m,则碰撞前系统的总动量为mv0,总动能为.假如选项A正确,则碰后总动量为,这违反了动量守恒定律,故不可能.假如选项B正确,则碰后总动量为,这也违反了动量守恒定律,故也不可能.假如选项C正确,则碰后总动量为mv0,但总动能为,这显然违反了机械能守恒定律,故也不可能.而选项D既满足机械能守恒定律,也满足动量守恒定律.故正确答案为D. 二、填空题 11. 【答案】. 12.【答案】 ,相同. 【解析】不论物体与车厢怎样发生作用,碰撞多少次,将物体与车厢作为系统,物体与车厢间作用力是内力,不改变系统的总动量,同时这一系统所受的合外力为零,系统的总动量守恒,以v0 7 为正方向,有mv0=(M+m)v′. 13.【答案】. 【解析】以整列列车为系统,不管最后一节车厢是否脱钩,系统所受的外力在竖直方向上重力与轨道给系统的弹力相平衡,在运动方向上牵引力与系统所受的总的阻力相平衡,即系统所受的外力为零,总动量守恒. 三、解答题: 14.【答案】.由于v2>0,说明炸裂后另一块的运动方向竖直向下. 【解析】以炸裂时分裂成的两块m1和(m-m1)组成的系统为研究对象,在炸裂的这一极短的时间内,系统受到的合外力——重力(并不为零),但炸裂时的爆炸力远远大于系统的重力,系统在竖直方向的动量可认为近似守恒.取竖直向下的方向为正方向,炸裂前的两部分是一个整体,具有的动量为:.当爆炸结束时,其中质量为m1的一块向上运动并返回到出发点,其速度大小与炸裂前相同,动量方向与规定的正方向相反..由动量守恒定律有.解得.由于v2>0,说明炸裂后另一块的运动方向竖直向下. 15.【答案】. 【解析】根据机械能守恒定律,先求小球与铁块相碰前的速度,,.再运用动量守恒定律,求出球与铁块相碰后铁块的速度v2,m1v=m1v1+m2v2,,因为小球是被弹回的,故取v1=-2 m/s,代入上式可求得v2=1.2 m/s.由平抛公式可求得铁块的水平射程:. 16.【答案】. 【解析】(1)子弹在击中物体A的过程中,子弹和物体A组成的系统动量守恒,以后开始压缩弹簧,A减速,故物体A开始压缩弹簧时速度最大,设B质量为m,则A质量为,子弹质量为 7 ,则,. (2)当弹簧压缩量最大时,物体A和B将有共同速度,由动量守恒定律可知: ,. 7查看更多