- 2021-05-14 发布 |
- 37.5 KB |
- 2页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2020版高考数学二轮复习 专题九 选做大题 专题对点练27 不等式选讲 文
专题对点练27 不等式选讲(选修4—5) 1. (2018全国Ⅰ,文23)已知f(x)=|x+1|-|ax-1|. (1)当a=1时,求不等式f(x)>1的解集; (2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围. 2.(2018全国Ⅲ,文23)设函数f(x)=|2x+1|+|x-1|. (1)画出y=f(x)的图象; (2)当x∈[0,+∞)时,f(x)≤ax+b,求a+b的最小值. 3.设a,b,c均为正数,且a+b+c=1. 求证:(1)ab+bc+ac≤; (2)≥1. 4.已知函数f(x)=|x+1|-2|x-a|,a>0. (1)当a=1时,求不等式f(x)>1的解集; (2)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围. 2 专题对点练27答案 1.解 (1)当a=1时,f(x)=|x+1|-|x-1|,即f(x)= 故不等式f(x)>1的解集为. (2)当x∈(0,1)时|x+1|-|ax-1|>x成立等价于当x∈(0,1)时|ax-1|<1成立. 若a≤0,则当x∈(0,1)时|ax-1|≥1; 若a>0,|ax-1|<1的解集为0查看更多