- 2021-05-13 发布 |
- 37.5 KB |
- 22页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考专题复习机械运动与机械波专题
机械运动与机械波 Ⅰ.基础巩固 一、机械振动 1、机械振动:物体(或物体的一部分)在某一中心位置两侧做的往复运动. 振动的特点:①存在某一中心位置;②往复运动,这是判断物体运动是否是机械振动的条件. 产生振动的条件:①振动物体受到回复力作用;②阻尼足够小; 2、回复力:振动物体所受到的总是指向平衡位置的合外力. ①回复力时刻指向平衡位置;②回复力是按效果命名的, 可由任意性质的力提供.可以是几个力的合力也可以是一个力的分力; ③合外力:指振动方向上的合外力,而不一定是物体受到的合外力.④在平衡位置处:回复力为零,而物体所受合外力不一定为零.如单摆运动,当小球在最低点处,回复力为零,而物体所受的合外力不为零. 3、平衡位置:是振动物体受回复力等于零的位置;也是振动停止后,振动物体所在位置;平衡位置通常在振动轨迹的中点。“平衡位置”不等于“平衡状态”。平衡位置是指回复力为零的位置,物体在该位置所受的合外力不一定为零。(如单摆摆到最低点时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以并不处于平衡状态) 二、简谐振动及其描述物理量 1、振动描述的物理量 (1)位移:由平衡位置指向振动质点所在位置的有向线段. ①是矢量,其最大值等于振幅; ②始点是平衡位置,所以跟回复力方向永远相反; ③位移随时间的变化图线就是振动图象. (2)振幅:离开平衡位置的最大距离. ①是标量; ②表示振动的强弱; (3)周期和频率:完成一次全变化所用的时间为周期T,每秒钟完成全变化的次数为频率f. ①二者都表示振动的快慢; ②二者互为倒数;T=1/f; ③当T和f由振动系统本身的性质决定时(非受迫振动),则叫固有频率与固有周期是定值,固有周期和固有频率与物体所处的状态无关. 2、简谐振动:物体所受的回复力跟位移大小成正比时,物体的振动是简偕振动. ①受力特征:回复力F=—KX。 ②运动特征:加速度a=一kx/m,方向与位移方向相反,总指向平衡位置。简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大。 说明:①判断一个振动是否为简谐运动的依据是看该振动中是否满足上述受力特征或运动特征。 ②简谐运动中涉及的位移、速率、加速度的参考点,都是平衡位置. 三.弹簧振子: 1、一个可作为质点的小球与一根弹性很好且不计质量的弹簧相连组成一个弹簧振子.一般来讲,弹簧振子的回复力是弹力(水平的弹簧振子)或弹力和重力的合力(竖直的弹簧振子)提供的.弹簧振子与质点一样,是一个理想的物理模型. 2、弹簧振子振动周期:T=2,只由振子质量和弹簧的劲度决定,与振幅无关,也与弹簧振动情况(如水平方向振动或竖直方向振动或在光滑的斜面上振动或在地球上或在月球上或在绕地球运转的人造卫星上)无关。 3、可以证明,竖直放置的弹簧振子的振动也是简谐运动,周期公式也是 。这个结论可以直接使用。 4、在水平方向上振动的弹簧振子的回复力是弹簧的弹力;在竖直方向上振动的弹簧振子的回复力是弹簧弹力和重力的合力。 【例2】如图所示,在质量为M的无下底的木箱顶部用一轻弹簧悬挂质量均为m(M≥m)的D、B两物体.箱子放在水平地面上,平衡后剪断D、B间的连线,此后D将做简谐运动.当D运动到最高点时,木箱对地压力为( ) A、Mg; B.(M-m)g; C、(M+m)g ; D、(M+2m)g 【解析】当剪断D、B间的连线后,物体D与弹簧一起可当作弹簧振子,它们将作简谐运动,其平衡位置就是当弹力与D的重力相平衡时的位置.初始运动时D的速度为零,故剪断D、B连线瞬间D相对以后的平衡位置的距离就是它的振幅,弹簧在没有剪断D、B连线时的伸长量为x1=2 mg/k,在振动过程中的平衡位置时的伸长量为x2=mg/k,故振子振动过程中的振幅为 A=x2-x1= mg/k D物在运动过程中,能上升到的最大高度是离其平衡位移为A的高度,由于D振动过程中的平衡位置在弹簧自由长度以下mg/k处,刚好弹簧的自由长度处就是物D运动的最高点,说明了当D运动到最高点时,D对弹簧无作用力,故木箱对地的压力为木箱的重力Mg. 四、振动过程中各物理量的变化情况 振动体位置 位移X 回复力F 加速度a 速度v 势能 动能 方向 大小 方向 大小 方向 大小 方向 大小 平衡位置O 0 0 0 最大 最小 最大 最大位移处A 指向A 最大 指向O 最大 指向O 0→最大 0 最大 最小 平衡位置O→最大位移处A 指向A 0→最大 指向O 0→最大 指向O 最大 O→A 最大→0 最小→最大 最大→最小 指向A 指向O A→O 最大位移处A→平衡位置O 最大→0 指向O 最大→0 最大→0 0→最大 最大→最小 最小→最大 说明:简谐运动的位移、回复力、加速度、速度都随时间做周期性变化(正弦或余弦函数),变化周期为T,振子的动能、势能也做周期性变化,周期为 T/2。 ①凡离开平衡位置的过程,v、Ek均减小,x、F、a、EP均增大;凡向平衡位置移动时,v、Ek均增大, x、F、a、EP均减小. ②振子运动至平衡位置时,x、F、a为零,EP最小,v、Ek最大;当在最大位移时,x、F、a、EP最大,v、Ek最为零; ③在平衡位置两侧的对称点上,x、F、a、v、Ek、EP的大小均相同. 【例3】如图所示,一弹簧振子在振动过程中,经a、b两点的速度相同,若它从a到b历时0.2s,从b再回到a的最短时间为0.4s,则该振子的振动频率为( )。 (A)1Hz;(B)1.25Hz (C)2Hz;(D) 2.5Hz 解析:振子经a、b两点速度相同,根据弹簧振子的运动特点,不难判断a、b两点对平衡位置(O点)一定是对称的,振子由b经O到a所用的时间也是0.2s,由于“从b再回到a的最短时间是0.4s,”说明振子运动到b后是第一次回到a点,且Ob不是振子的最大位移。设图中的c、d为最大位移处,则振子从b→c→b历时0.2s,同理,振子从a→d→a,也历时0.2s,故该振子的周期T=0.8s,根据周期和频率互为倒数的关系,不难确定该振子的振动频率为1.25Hz。 综上所述,本题应选择(B)。 五、简谐运动图象 1.物理意义:表示振动物体(或质点)的位移随时间变化的规律. 2.坐标系:以横轴表示时间,纵轴表示位移,用平滑曲线连接各时刻对应的位移末端即得 3.特点:简谐运动的图象是正弦(或余弦)曲线. 4.应用:①可直观地读取振幅A、周期T以及各时刻的位移x; ②判定各时刻的回复力、速度、加速度方向; ③判定某段时间内位移、回复力、加速度、速度、动能、势能、等物理量的变化情况 注意:①振动图象不是质点的运动轨迹. ②计时点一旦确定,形状不变,仅随时间向后延伸。 ③简谐运动图像的具体形状跟计时起点及正方向的规定有关。 六、单摆 1、单摆:在细线的一端挂上一个小球,另一端固定在悬点上,如果线的伸缩和质量可以忽略,球的直径比线长短得多,这样的装置叫做单摆.这是一种理想化的模型,一般情况下细线(杆)下接一个小球的装置都可作为单摆. 2、单摆振动可看做简谐运动的条件是:在同一竖直面内摆动,摆角θ<100. 3、单摆振动的回复力是重力的切向分力,不能说成是重力和拉力的合力。在平衡位置振子所受回复力是零,但合力是向心力,指向悬点,不为零。 4、单摆的周期:当 l、g一定,则周期为定值 T=2π,与小球是否运动无关.与摆球质量m、振幅A都无关。其中摆长l指悬点到小球重心的距离,重力加速度为单摆所在处的测量值。要区分摆长和摆线长。 5、小球在光滑圆弧上的往复滚动,和单摆完全等同。只要摆角足够小,这个振动就是简谐运动。这时周期公式中的l应该是圆弧半径R和小球半径r的差。 6、秒摆:周期为2s的单摆.其摆长约为lm. 【例4】如图为一单摆及其振动图象,回答: (1)单摆的振幅为 ,频率为 ,摆长为 ,一周期内位移x(F回、a、Ep)最大的时刻为 . 解析:由纵坐标的最大位移可直接读取振幅为3crn.横坐标可直接读取完成一个全振动即一个完整的正弦曲线所占据的时间.轴长度就是周期 T=2s,进而算出频率f=1/T=0.5Hz,算出摆长l=gT2/4π2=1m· 从图中看出纵坐标有最大值的时刻为0.5 s末和1.5s末. 【例5】若摆球从E指向G为正方向,α为最大摆角,则图象中O、A、B、C点分别对应单摆中的 点.一周期内加速度为正且减小,并与速度同方向的时间范围是 。势能增加且速度为正的时间范围是 . 解析:图象中O点位移为零,O到A的过程位移为正.且增大.A处最大,历时1/4周期,显然摆球是从平衡位置E起振并向G方向运动的,所以O对应E,A对应G.A到B的过程分析方法相同,因而O、A、B、C对应E、G、E、F点. 摆动中EF间加速度为正,且靠近平衡位置过程中加速度逐渐减小,所以是从F向E的运动过程,在图象中为C到D的过程,时间范围是1.5—2.0s间 摆球远离平衡位置势能增加,即从E向两侧摆动,而速度为正,显然是从 E向G的过程.在图象中为从O到A,时间范围是0—0.5 s间. 七、振动的能量 1、对于给定的振动系统,振动的动能由振动的速度决定,振动的势能由振动的位移决定,振动的能量就是振动系统在某个状态下的动能和势能的总和. 2、振动系统的机械能大小由振幅大小决定,同一系统振幅越大,机械能就越大.若无能量损失,简谐运动过程中机械能守恒,做等幅振动. 3、阻尼振动与无阻尼振动 (1)振幅逐渐减小的振动叫做阻尼振动. (2)振幅不变的振动为等幅振动,也叫做无阻尼振动. 注意:等幅振动、阻尼振动是从振幅是否变化的角度来区分的,等幅振动不一定不受阻力作用. 4.受迫振动 (1)振动系统在周期性驱动力作用下的振动叫做受迫振动. (2)受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关. 5.共振 (1)当驱动力的频率等于振动系统的固有频率时,物体的振幅最大的现象叫做共振. (2)条件:驱动力的频率等于振动系统的固有频率. (3)共振曲线.如图所示. 【例6】行驶着的火车车轮,每接触到两根钢轨相接处的缝隙时,就受到一次撞击使车厢在支着它的弹簧上面振动起来.已知车厢的固有同期是0.58s,每根钢轨的长是12.6 m,当车厢上、下振动得最厉害时,火车的车速等于 m/s. 解析:该题应用共振的条件来求解.火车行驶时,每当通过铁轨的接缝处就会受到一次冲击力,该力即为策动力.当策动周期T策和弹簧与车厢的国有周期相等时,即发生共振,即 T策=T固= 0.58 s ………① T策=t=L/v……② 将①代入②解得v=L/0.58=21.7 m/s 答案:21.7m/s 八、机械波 1、定义:机械振动在介质中传播就形成机械波. 2、产生条件:(1)有作机械振动的物体作为波源.(2)有能传播机械振动的介质. 3、分类:①横波:质点的振动方向与波的传播方向垂直.凸起部分叫波峰,凹下部分叫波谷 ②纵波:质点的振动方向与波的传播方向在一直线上.质点分布密的叫密部,疏的部分叫疏部,液体和气体不能传播横波。 4.机械波的传播过程 (1)机械波传播的是振动形式和能量.质点只在各自的平衡位置附近做振动,并不随波迁移.后一质点的振动总是落后于带动它的前一质点的振动。 (2)介质中各质点的振动周期和频率都与波源的振动周期和频率相同. (3)由波源向远处的各质点都依次重复波源的振动. 【描述机械波的物理量】 1.波长λ:两个相邻的,在振动过程中相对平衡位置的位移总是相等的质点间的距离叫波长.在横波中,两个相邻的波峰或相邻的波谷之间的距离.在纵波中两相邻的的密部(或疏部)中央间的距离,振动在一个周期内在介质中传播的距离等于波长 2.周期与频率.波的频率由振源决定,在任何介质中传播波的频率不变。波从一种介质进入另一种介质时,唯一不变的是频率(或周期),波速与波长都发生变化. 3.波速:单位时间内波向外传播的距离。v=s/t=λ/T=λf,波速的大小由介质决定。 【说明】 ①波的频率是介质中各质点的振动频率,质点的振动是一种受迫振动,驱动力来源于波源,所以波的频率由波源决定,是波源的频率. 波速是介质对波的传播速度.介质能传播波是因为介质中各质点间有弹力的作用,弹力越大,相互对运动的反应越灵教,则对波的传播速度越大.通常情况下,固体对机械波的传摇速度校大,气体对机械波的传播速度较小.对纵波和横波,质点间的相互作用的性质有区别,那么同一物质对纵波和对横波的传播速度不相同.所以,介质对波的传播速度由介质决定,与振动频率无关. 波长是质点完成一次全振动所传播的距离,所以波长的长度与波速v和周期T有关.即波长由波源和介质共同决定. 由以上分析知,波从一种介质进入另一种介质,频率不会发生变化,速度和波长将发生改变. ②振源的振动在介质中由近及远传播,离振源较远些的质点的振动要滞后一些,这样各质点的振动虽然频率相同,但步调不一致,离振源越远越滞后.沿波的传播方向上,离波源一个波长的质点的振动要滞后一个周期,相距一个波长的两质点振动步调是一致的.反之,相距1/2个波长的两质点的振动步调是相反的.所以与波源相距波长的整数倍的质点与波源的振动同步(同相振动);与波源相距为1/2波长的奇数倍的质点与波源派的振动步调相反(反相振动.) 【例7】一简谐横波的波源的振动周期为1s,振幅为1crn,波速为1m/s,若振源质点从平衡位置开始振动,且从振源质点开始振动计时,当 t=0.5s时( ) A.距振源¼λ处的质点的位移处于最大值 B.距振源¼λ处的质点的速度处于最大值 C.距振源½λ处的质点的位移处于最大值 D.距振源½λ处的质点的速度处于最大值 解析:根据题意,在0.5s 内波传播的距离 Δx=vt=0.5m.即Δx=½λ.也就是说,振动刚好传播到½λ处,因此该处的质点刚要开始振动,速度和位移都是零,所以选项C、D都是不对的,振源的振动传播到距振源¼λ位置需要的时间为T/4=0。25s,所以在振源开始振动0.5 s后.¼λ处的质点,振动了0.25 s,即1/4个周期,此时该质点应处于最大位移处,速度为零. 答案:A 【波的图象】 (1)波的图象 ①坐标轴:取质点平衡位置的连线作为x轴,表示质点分布的顺序;取过波源质点的振动方向作为Y轴表示质点位移. ②意义:在波的传播方向上,介质中质点在某一时刻相对各自平衡位置的位移. ③形状:正弦(或余弦)图线. 因而画波的图象.要画出波的图象通常需要知道波长λ、振幅A、波的传播方向(或波源的方位)、横轴上某质点在该时刻的振动状态(包括位移和振动方向)这四个要素. (2)简谐波图象的应用 ①从图象上直接读出波长和振幅. ②可确定任一质点在该时刻的位移. ③可确定任一质点在该时刻的加速度的方向. ④若已知波的传播方向,可确定各质点在该时刻的振动方向.若已知某质点的振动方向,可确定波的传播方向. ⑤若已知波的传播方向,可画出在Δt前后的波形.沿传播方向平移Δs=vΔt. 九、机械波解题方法 1.质点振动方向和波的传播方向的判定 (1)在波形图中,由波的传播方向确定媒质中某个质点(设为质点A)的振动方向(即振动时的速度方向):逆着波的传播方向,在质点 A的附近找一个相邻的质点B.若质点B的位置在质点A的负方向处,则A质点应向负方向运动,反之。则向正方向运动如图中所示,图中的质点A应向y轴的正方向运动(质点B先于质点A振动.A要跟随B振动). (2)在波形图中.由质点的振动方向确定波的传播方向,若质点C是沿Y轴负方向运动,在C质点位置的负方向附近找一相邻的质点D.若质点D在质点C位置X轴的正方向,则波由X轴的正方向向负方向传播:反之.则向X轴的正方向传播.如图所示,这列波应向X轴的正方向传播(质点c要跟随先振动的质点D的振动) 具体方法为:①带动法:根据波的形成,利用靠近波源的点带动它邻近的离波源稍远的点的道理,在被判定振动方向的点P附近(不超过λ/4)图象上靠近波源一方找另一点P/,若P/在P上方,则P/带动P向上运动如图,若P/在P的下方,则P/带动P向下运动. ②上下坡法:沿着波的传播方向走波形状“山路”,从“谷”到“峰”的上坡阶段上各点都是向下运动的,从“峰”到“谷”的下坡阶段上各点都是向上运动的,即“上坡下,下坡上” ③微平移法:将波形沿波的传播方向做微小移动Δx=v·Δt<λ/4,则可判定P点沿y方向的运动方向了. 反过来已知波形和波形上一点P的振动方向也可判定波的传播方向. 【补充】单侧法 【例8】一列波在媒质中向某一方向传播,图所示的为此波在某一时刻的波形图,并且此时振动还只发生在M、N之间.此列波的周期为T,Q质点速度方向在波形图中是向下的,下列判断正确的是 ( ) A.波源是M,由波源起振开始计时,P质点已经振动的时间为T; B.波源是N,由波源起振开始计时,P点已经振动的时间为3 T/4 C.波源是N,由波源起振开始计时,P点已经振动的时间为T/4。 D.波源是M,由波源起振开始计时,P点已经振动的时间为T/4 解析:若波源是M,则由于Q点的速度方向向下,在 Q点的下向找一相邻的质点,这样的质点在Q的右侧,说明了振动是由右向左传播,N点是波源,图示时刻的振动传到M点,P与M点相距λ/4,则P点已经振动了T/4.故C选项正确。 2.已知波速V和波形,画出再经Δt时间波形图的方法. (1)平移法:先算出经Δt时间波传播的距离上Δx=V·Δt,再把波形沿波的传播方向平移动Δx即可.因为波动图象的重复性,若知波长λ,则波形平移nλ时波形不变,当Δx=nλ十x时,可采取去整nλ留零x的方法,只需平移x即可 (2)特殊点法:(若知周期T则更简单) 在波形上找两特殊点,如过平衡位置的点和与它相邻的峰(谷)点,先确定这两点的振动方向,再看Δt=nT+t,由于经nT波形不变,所以也采取去整nT留零t的方法,分别做出两特殊点经 t后的位置,然后按正弦规律画出新波形. 【例9】一质点以坐标原点0为中心位置在y轴上振动,其振幅为5m,周期为0.4s,振 动在介质中产生的简谐波沿x轴的正向传播,其速度为1.0m/s,计时开始时该质点 在坐标原点0,速度方向为y轴正方向,0.2s后此质点立即停止运动,则再经过0.2s 后的波形是( ) 答案:B 【例10】 图是某时刻一列横波在空间传播的波形图线。已知波是沿x轴正方向传播,波速为4m/s,试计算并画出经过此时之后1.25s的空间波形图。 解析:由波形图已知λ=0.08m,由T=λ/v=0.08/4=0.02s,经过t=1.25s,即相当于1.25/0.02=62.5个周期,而每经过一个周期,波就向前传播一个波长。经过62.5个周期,波向前传播了62.5个波长。据波的周期性,当经过振动周期的整数倍时,波只是向前传播了整数倍个波长,而原有波形不会发生改变,所以可以先画出经过1/2周期后的波形,如图。再将此图向前扩展62个波长即为题目要求,波形如图。 3.已知振幅A和周期T,求振动质点在Δt时间内的路程和位移. 求振动质点在Δt时间内的路程和位移,由于牵涉质点的初始状态,需用正弦函数较复杂.但Δt若为半周期T/2的整数倍则很容易. 在半周期内质点的路程为 2A.若Δt= n·T/2, n= 1、2、3……, 则路程s=2A·n,其中n=. 当质点的初始位移(相对平衡位置)为x1=x0时,经T/2的奇数倍时x2=-x0,经T/2的偶数倍时x2=x0. 【例11】如图所示,在xOy平面内有一沿x轴正方向传播的简谐振动横波,波速为1m/s,振幅为4cm,频率为2.5Hz,在t=0时刻,P点位于其平衡位置上方最大位移处,则距P点为0.2m的Q点 A、在0.1s时的位移是4cm; B、在0.1s时的速度最大; C、在0.1s时的速度向下; D、在0到0.1s的时间内路程是4cm; 解析:,P与Q相距λ/2,先画出若干个波长的波形,经过0.1s也就是T/4后,Q点将回到平衡位置,且向上运动,B项正确;在0到0.1s时间内通过的路程为振幅,即4cm,D项正确 拓展:若求经Δt=2.5s时Q的路程和Q的位移,如何求? 十、振动与波的图像多解问题 二者图像对比 振动是一个质点随时间的推移而呈现的现象,波动是全部质点联合起来共同呈现的现象. 简谐运动和其引起的简谐波的振幅、频率相同,二者的图象有相同的正弦(余弦)曲线形状,但二图象是有本质区别的.见表: 振动图象 波动图象 研究对象 一振动质点 沿波传播方向所有质点 研究内容 一质点的位移随时间的变化规律 某时刻所有质点的空间分布规律 图线 物理意义 表示一质点在各时刻的位移 表示某时刻各质点的位移 图线变化 随时间推移图延续,但已有形状不变 随时间推移,图象沿传播方向平移 一完整曲线占横坐标距离 表示一个周期 表示一个波长 波动图象的多解涉及 (1)波的空间的周期性;(2)波的时间的周期性;(3)波的双向性;(4)介质中两质点间距离与波长关系未定;(5)介质中质点的振动方向未定. 1.波的空间的周期性 沿波的传播方向,在x轴上任取一点P(x),如图所示,P点的振动完全重复波源O的振动,只是时间上比O点要落后Δt,且Δt =x/v=xT0/λ.在同一波线上,凡坐标与P点坐标x之差为波长整数倍的许多质点,在同一时刻t的位移都与坐标为λ的质点的振动位移相同,其振动速度、加速度也与之相同,或者说它们的振动“相貌”完全相同.因此,在同一波线上,某一振动“相貌”势必会不断重复出现,这就是机械波的空间的周期性. 空间周期性说明,相距为波长整数倍的多个质点振动情况完全相同. 2.波的时间的周期性 在x轴上同一个给定的质点,在t+nT时刻的振动情况与它在t时刻的振动情况(位移、速度、加速度等)相同.因此,在t时刻的波形,在t+nT时刻会多次重复出现.这就是机械波的时间的周期性. 波的时间的周期性,表明波在传播过程中,经过整数倍周期时,其波的图象相同. 3.波的双向性 双向性是指波沿正负方向传播时,若正、负两方向的传播时间之和等于周期的整数倍,则沿正负两方向传播的某一时刻波形相同. 4.介质中两质点间的距离与波长关系未定 在波的传播方向上,如果两个质点间的距离不确定,就会形成多解,解题时若不能联想到所有可能情况,易出现漏解. 5.介质中质点的振动方向未定 在波的传播过程中,质点振动方向与传播方向联系,若某一质点振动方向未确定,则波的传播方向有两种,这样形成多解. 【例12】一列在x轴上传播的简谐波,在xl= 10cm和x2=110cm处的两个质点的振动图象如图所示,则质点振动的周期为 s,这列简谐波的波长为 cm. 【解析】由两质点振动图象直接读出质点振动周期为 4s.由于没有说明波的传播方向,本题就有两种可能性:(1)波沿x轴的正方向传播.在t=0时,x1在正最大位移处,x2在平衡位置并向y轴的正方向运动,那么这两个质点间的相对位置就有如图所示的可能性,也就x2一 x1=(n十1/4)λ,λ=400/(1十4n)cm (2)波沿x轴负方向传播.在t=0时.x1在正最大位移处,x2在平衡位置并向y轴的正方向运动,那么这两个质点间的相对位置就有如图所示的可能性,x2一 x1=(n十3/4)λ,λ=400/(3+ 4n)cm 十一、波的现象 1.波的反射:波遇到障碍物会返回来继续传播的现象. (1)波面:沿波传播方向的波峰(或波谷)在同一时刻构成的面. (2)波线:跟波面垂直的线,表示波的传播方向. (3)入射波与反射波的方向关系. ①入射角:入射波的波线与平面法线的夹角. ② 反射角:反射波的波线与平面法线的夹角. ③在波的反射中,反射角等于入射角;反射波的波长、频率和波速都跟入射波的相同. (4)特例:夏日轰鸣不绝的雷声;在空房子里说话会听到声音更响. (5)人耳能区分相差0.1 s以上的两个声音. 2.波的折射: 波从一种介质射入另一种介质时,传播方向发生改变的现象. (1)波的折射中,波的频率不变,波速和波长都发生了改变. (2)折射角:折射波的波线与界面法线的夹角. (3)入射角i与折射角r的关系 V1和v2是波在介质I和介质Ⅱ中的波速.i为I介质中的入射角, r为Ⅱ介质中的折射角. 3.波的衍射:波可以绕过障碍物继续传播的现象. 衍射是波的特性,一切波都能发生衍射. 产生明显衍射现象的条件是:障碍物或孔的尺寸比波长小或与波长相差不多。 例如:声波的波长一般比院坡大,“隔堵有耳”就是声波衍射的例证. 说明:衍射是波特有的现象. 4.波的叠加与波的干涉 (1)波的叠加原理:在两列波相遇的区域里,每个质点都将参与两列波引起的振动,其位移是两列波分别引起位移的矢量和.相遇后仍保持原来的运动状态.波在相遇区域里,互不干扰,有独立性. 【例13】一个波源在绳的左端发出半个波①,频率为f1,振幅为A1;同时另一个波源在绳的右端发出半个波②,频率为f2,振幅为A2, P为两波源的中点,由图6—18可知,下述说法错误的是( ) A.两列波同时到达两波源的中点P B.两列波相遇时, P点波峰值可达A1+A2 C.两列波相遇后,各自仍保持原来的波形独立传播 D、两列波相遇时,绳上的波峰可达A1+A2的点只有一点,此点在P点的左侧 解析:因两列波在同一介质(绳)中传播,所以波速相同,由图可知 λ1>λ2 ,说明它们的波峰高P点距离不等,波同时传至P点,波峰不会同时到P点,所以P点波峰值小于A1+ A2.两列波波峰能同时传到的点应在P点左侧,所以A,D正确,B错误,又由波具有独立性,互不干扰,所以C正确.答案:B (2)波的干涉: ①条件:频率相同的两列同性质的波相遇. ②现象:某些地方的振动加强,某些地方的振动减弱,并且加强和减弱的区域间隔出现,加强的地方始终加强,减弱的地方始终减弱,形成的图样是稳定的干涉图样. 说明:①加强、减弱点的位移与振幅. 加强处和减弱处都是两列波引起的位移的矢量和,质点的位移都随时间变化,各质点仍围烧平衡位置振动,与振源振动周期相同. 加强处振幅大,等于两列波的振幅之和,即A=A1 +A2,质点的振动能量大,并且始终最大. 减弱处振幅小,等于两列波的振福之差,即A=∣A1-A2∣,质点振动能量小,并且始终最小,若A1=A2,则减弱处不振动. 加强点的位移变化范围: 一∣A1 +A2∣~∣A1 +A2∣ 减弱点位移变化范围:一∣A1-A2∣~∣A1-A2∣ ②干涉是波特有的现象. ③加强和减弱点的判断. 波峰与波峰(波谷与波谷)相遇处一定是加强的,并且用一条直线将以上加强点连接起来,这条直线上的点都是加强的;而波峰与波谷相遇处一定是减弱的,把以上减弱点用直线连接起来,直线上的点都是减弱的.加强点与减弱点之间各质点的振幅介于加强点与减弱点振幅之间. 当两相干波源振动步调相同时,到两波源的路程差Δs是波长整数倍处是加强区.而路程差是半波长奇数倍处是减弱区. 【例14】如图所示,在同一均匀媒质中有S1、S2两个波源,这个波源的频率、振动方向均相同,且振动的步调完全一致,S1、S2之间相距两个波长,D点为S1、S2连线中点,今以D点为圆心,以R=DS1为半径画圆,问在该圆周上(S1、S2两波源除外)共有几个加强点? 分析:干涉强、弱区的判断方法有两种: (1)在波峰与波峰相遇或波谷与波谷相遇处是干涉加强区;在波峰与波谷相遇或波谷与波峰相遇处是干涉减弱区。 (2)与相同波源的距离差为半波长的偶数倍处是干涉加强区;与相同波源的距离差为半波长的奇数倍处是干涉减弱区。 解答:由干涉强、弱的第二种判断方法可知,干涉加强区的集合实际上是以两波源所在处为焦点的双曲线簇。由此不难判断:以波源边线为直径的贺周上分布看,到两波源距离差等于0的两个加强是D1、D2;到两波源距离差等于的四个加强是A1、A2、C1、C2。即:除两波源外,圆周上振动加强是共有六个。 十二、声波 (1)空气中的声波是纵波.能在空气、液体、固体中传播.在通常情况下在空气中为340m/s,随介质、温度改变而变. (2)人耳听到声波的频率范围:20 Hz ---20190 Hz. (3)能够把回声与原声区分开来的最小时间间隔为0.1s (4)声波亦能发生反射、折射、干涉和衍射等现象.声波的共振现象称为声波的共鸣. (5)次声波:频率低于20 Hz的声波. (6)超声波:频率高于20190 Hz的声波. 应用:声呐、探伤、打碎、粉碎、诊断等. (7)声音的分类①乐音:好听悦耳的声音.乐音的三要素:音调(基音的频率的高低)、响度(声源的振幅大小)、音品(泛音的多少,泛音的频率和振幅共同决定的).声强:单位时间内通过垂直于声波传播方向单位面积的能量.②噪声:嘈杂刺耳的声音,是妨碍人的正常生活和工作的声音.噪声已列为国际公害. 【例15】如果声源、听者和障碍物都在同一直线上,声源位于听者和障碍物之间,离听者12m,离障碍物34m,已知声音在空气中的传播速度340m/s,听者是否能把原来的声音和回声区分开来? 【解析】人耳能分外间隔大小0.1s的两个声音,图中S为声源,A为听者,O为障碍物,当声波直接传到人耳时,经历时间tl=SA/v……①,当声波传到障碍物反射到人耳时,经历时间………②,直接传到人耳的声音与回声之间的时间差Δt=t2-t1,即Δt=2SO/v=0.2s。Δt>0.1s,人耳可以区分 Ⅱ习题练习 1、一列简谐横波沿x轴负方向传播,图1是t = 1s时的波形图,图2是波中某振动质元位移随时间变化的振动图线(两图用同同一时间起点),则图2可能是图1中哪个质元的振动图线?( ) A.x = 0处的质元; B.x = 1m处的质元; C.x = 2m处的质元; D.x = 3m处的质元。 2、简谐机械波在给定的媒质中传播时,下列说法中正确的是( ) A.振幅越大,则波传播的速度越快 B.振幅越大,则波传播的速度越慢 C.在一个周期内,振动质元走过的路程等于一个波长 D.振动的频率越高,则波传播一个波长的距离所用的时间越短 3、公路上匀速行驶的货车受一扰动,车上货物随车厢底板上下振动但不脱离底板。一段时间内货物在坚直方向的振动可视为简谐运动,周期为T。取竖直向上为正方向,以某时刻作为计时起点,即,其振动图象如图所示,则( ) A. 时,货物对车厢底板的压力最大 B. 时,货物对车厢底板的压力最小 C. 时,货物对车厢底板的压力最大 D. 时,货物对车厢底板的压力最小 4、一单摆做小角度摆动,其振动图象如图,以下说法正确的是( ) A. 时刻摆球速度最大,悬线对它的拉力最小 B. 时刻摆球速度为零,悬线对它的拉力最小 C. 时刻摆球速度为零,悬线对它的拉力最大 D. 时刻摆球速度最大,悬线对它的拉力最大 5.一列简谐横波沿x轴传播,周期为T,t=0时刻的波形如图所示.此时平衡位置位于x=3 m处的质点正在向上运动,若a、b两质点平衡位置的坐标分别为xa=2.5 m, xb=5.5 m,则 A.当a质点处在波峰时,b质点恰在波谷 B.t=T/4时,a质点正在向y轴负方向运动 C.t=3T/4时,b质点正在向y轴负方向运动 D.在某一时刻,a、b两质点的位移和速度可能相同 6.、 一列简谐横波沿x轴正方向传播,振幅为A。t=0时, 平衡位置在x=0处的质元位于y=0处, 且向y轴负方向运动;此时,平衡位置在x=0.15m处的质元位于y=A处.该波的波长可能等于 A.0.60m B.0.20m C.0.12m D.0.086m 7、下列关于简谐振动和简谐机械波的说法正确的是 ( ) A.弹簧振子的周期与振幅有关 B.横波在介质中的传播速度由介质本身的性质决定 C.在波传播方向上的某个质点的振动速度就是波的传播速度 D.单位时间内经过媒质中一点的完全波的个数就是这列简谐波的频率 8.声波属于机械波。下列有关声波的描述中正确的是 ( ) A.同一列声波在各种介质中的波长是相同的 B.声波的频率越高,它在空气中传播的速度越快 C.声波可以绕过障碍物传播,即它可以发生衍射 D.人能辨别不同乐器同时发出的声音,证明声波不会发生干涉 9.一列简谐横波沿直线由a向b传播,相距10.5m的a、b两处的质点振动图象如图中a、b所示,则 A.该波的振幅可能是20cm B.该波的波长可能是8.4m C.该波的波速可能是10.5 m/s D.该波由口传播到6可能历时7s 10. 图中是观察水面波衍射的实验装置,AC和BD是两块挡板,AB是一个孔,O为波源,图中已画出波源所在区域波的传播情况,每两条相邻波纹(图中曲线)之间距离表示一个波长,则波经过孔之后的传播情况,下列描述正确的是:(ABC) A.此时能明显观察到波的衍射现象; B.挡板前后波纹间距离相等; C.如果将孔AB扩大,有可能观察不到明显的衍射现象; D.如果孔的大小不变,使波源频率增大,能更明显地观察到衍射现象。 11.、a为声源,发出声波;b为接收者,接收a发出的声波。a、b若运动,只限于在沿两者连线方向上,下列说法正确的是 A.a静止,b向a运动,则b收到的声频比a发出的高 B.a、b向同一方向运动,则b收到的声频一定比a发出的高 C.a、b向同一方向运动,则b收到的声频一定比a发出的低 D.a、b都向相互背离的方向运动,则b收到的声频比a发出的高 答案:A 【习题训练答案】 1.A 2.D 3.C 4.D 5.C解析:由图可看出波长为4m,t=0时刻x=3m处的质点向上振动,可得该波向左传播。将整个波形图向左平移1.5m时,a质点到达波峰,此时b质点正好在平衡位置,与t=0时刻平衡位置在7m处的质点振动状态一样,故a质点到达波峰时,b质点正在平衡位置并向上振动,A错;将图像整体向左平移1m,即波传播T/4时,a的振动状态与与t=0时刻平衡位置在3.5m处的质点振动状态一样,即处在平衡位置上方并向y轴正方向运动,B错;将图像整体向左平移3m,即波传播3T/4时,a的振动状态与与t=0时刻平衡位置在9.5m处和1.5m的质点振动状态一样,即处在平衡位置下方并向y轴负方向运动,C对;a、b质点相隔3m,即相差3T/4,速度相同的质点应该在半周期内才会出现,故D错。 6.AC 7.BD 8.C 9.D 10.ABC 11.A查看更多