- 2021-05-13 发布 |
- 37.5 KB |
- 8页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考数学易错题专题复习统计与概率
统计与概率 易错点1:全面调查与抽样调查的适用范围易分不清楚. 易错题1:下列调查:①了解某市中小学生的视力情况;②了解某市中学生课外阅读的情况;③了解某市百岁以上老人的健康情况;④了解某市老年人的生活条件情况.其中适合采用抽样调查的有……………………………………………………………………………( ) A.①② B.①②③ C.①②④ D.②③④ 错解:A 正解:C 赏析:对常采用抽样调查的一些情形判断不清是造成本题错解的主要原因.常采用抽样调查的情形有:①受客观条件限制,无法对所有个体进行全面调查,如调查某市中小学生的视力情况;②调查具有破坏性,不允许全面调查,如调查某批炮弹的杀伤半径;总体容量较大,个体分布较广,如某市青年在外创业的情况.同时,还应注意抽样调查的一些要求:一是抽取的样本要有代表性;二是抽取的样本数目不能太少. 易错点2:对平均数、中位数与众数的概念理解不透彻,计算易出错. 易错题2:某中学随机调查了15名学生,了解他们一周在校参加课外体育锻炼的时间,列表如下: 锻炼时间(小时) 5 6 7 8 人数 3 7 4 1 则这15名学生一周在校参加课外体育锻炼时间的中位数和众数分别是…………( ) A.6.5,7 B.7,7 C.6.5,6 D.6,6 错解:A 正解:D 赏析:造成出错的原因是对中位数与众数的概念理解不清.众数是指出现次数最多的数据而不是指次数,求中位数一定要把数据先按大小顺序排列,再取正中间的一个数据或正中间两个数据的平均数作为中位数.本题中,第=8个数据即为中位数,∵3<8<3+7,∴第8个数据是6,即中位数为6;数据6出现的次数是7,次数最多,∴众数是6. 易错点3:方差的概念及计算易出错. 易错题3:甲、乙、丙三组各有7名成员,测得三组成员体重数据的平均数都是58,方差分别为=35,=24.5,=15.则数据波动最小的一组是_____________. 错解:甲 正解:丙 赏析:对描述数据离散程度的特征数----方差理解出错,从而本题出现错解.一组数据的方差越大,这组数据的波动越大,方差越小,数据的波动越小.本题中,∵15<24.5<35,∴<<,故填丙. 易错题4:我校八年级(1)组织了一次英语风采大赛,甲、乙两队各10人的比赛成绩如下表(10分制):(单位:分) 甲 7 8 9 7 10 10 9 10 10 10 乙 10 8 7 9 8 10 10 9 10 9 (1)甲队成绩的众数是___________分,乙队成绩的中位数是_____________分. (2)请从平均数和方差两方面判断,谁的成绩更好些. 错解:(1)10,9; (2)∵(7×2+8+9×2+10×5)=9(分), (7+8×2+9×3+10×4)=9(分), [2×(7-9)2+(8-9)2+2×(9-9)2+5×(10-9)2]=1.4, [(7-9)2+2×(8-9)2+3×(9-9)2+4×(10-9)2]=1.4, ∴,, ∴从平均数和方差两方面判断,两人的成绩一样好. 正解:(1)10,9; (2)∵(7×2+8+9×2+10×5)=9(分), (7+8×2+9×3+10×4)=9(分), [2×(7-9)2+(8-9)2+2×(9-9)2+5×(10-9)2]=1.4, [(7-9)2+2×(8-9)2+3×(9-9)2+4×(10-9)2]=1, ∴,, ∴从平均数和方差两方面判断,两人的成绩一样好. 赏析:本题错误的原因是从乙的方差计算开始出错,从而导致结果判断不正确.一组数据的平均数计算公式是=,方差的计算公式是s2=.这类问题通常先计算平均数,然后计算方差,再分别比较平均数和方差的大小,综合判断,得出结论.从计算平均数开始,每一步都要认真仔细,否则接下来的步骤就跟着出错. 易错点4:两步及两步以上简单事件的概率求法;用树状图或列表的方法表示各种等可能的情况. 易错题5:在﹣2,﹣1,1,2这四个数中,任选两个数的积作为k的值,使反比例函数y=的图象在第一、三象限的概率是____________. 错解: 正解: 赏析:本题对概率的概念理解不透彻,误以为正负各两个数,概率就为,从而出错.其实,从四个数中任选两个,可列表如下:【版权所有:21教育】 ﹣2 ﹣1 1 2 ﹣2 (﹣2,﹣1) (﹣2,1) (﹣2,2) ﹣1 (﹣1,﹣2) (﹣1,1) (﹣1,2) 1 (1,﹣2) (1,﹣1) (1,2) 2 (2,﹣2) (2,﹣1) (2,1) 或画树状图如下: 共有12个等可能情况,其中积为正的情况有4种,所以概率P==. 易错点5:用概率判断游戏是否公平;复杂事件的概率求法. 易错题6:如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等. (1)现随机转动转盘一次,停止后,指针指向1的概率为_____________. (2)甲、乙两人利用这个转盘做游戏,若采用下列规则:随机转动转盘两次,停止后,指针各指向一个数字,若第一次数字大于第二次数字,则甲胜;否则,乙胜.你认为这个游戏规则对两人公平吗?请用列表或画树状图的方法说明理由. 错解:(1) (2)列表如下: 1 2 3 1 (2,1) (3,1) 2 (1,2) (3,2) 3 (1,3) (2,3) 所有情况共6种,第一次数字大于第二次数字、第一次数字小于第二次数字各三种. ∴P(甲)=,P(乙)=,∵=,∴该游戏公平. 正解:(1) (2)根据规则,将所有可能情况列表如下: 1 2 3 1 (1,1) (2,1) (3,1) 2 (1,2) (2,2) (3,2) 3 (1,3) (2,3) (3,3) 或画树状图如下: 所有等可能情况共9种,第一次数字大于第二次数字的情况有3种,第一次数字不大于第二次数字的情况有6种. ∴P(甲)=,P(乙)=,∵=,∴该游戏不公平. 赏析:本题错在第(2)小题中,对游戏规则的理解错误,从而造成本小题错解.游戏是否公平的问题实际上是概率是否相等的问题,所以准确求出有关的概率是解决此类问题的关键. 易错点6:从图表中获取信息;统计与概率的综合应用. 易错题7:为推广阳光体育“大课间”活动,我市某中学决定在学生中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①、②的统计图.请结合图中的信息解答下列问题: (1)在这项调查中,共调查了多少名学生? (2)请计算本次调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整; (3)若调查到喜欢“跳绳”的5名学生中有3名男生,2名女生.现从这5名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到同性别学生的概率. 错解:(1)60÷(1-10%-20%-40%)=200(名); (2)本次调查中喜欢“立定跳远”的学生人数为:200-15-60-40=95(名), 所占百分比为:×100%=47.5%, 两个统计图补充如下: (3)用A表示男生,B表示女生,列表如下: A1 A2 A3 B1 B2 A1 A1 A1 A1 A2 A1 A3 A1 B1 A1 B2 A2 A2 A1 A2 A2 A2 A3 A2 B1 A2 B2 A3 A3 A1 A3 A2 A3 A3 A3 B1 A3 B2 B1 B1 A1 B1 A2 B1 A3 B1 B1 B1 B2 B2 B2 A1 B2 A2 B2 A3 B2 B1 B2 B2 共有25种情况,其中同性别学生有13种情况,∴刚好抽到同性别学生的概率P=. 正解:(1)由题意,得15÷10%=150(名)或60÷40%=150(名)或30÷20%=150(名) 答:在这项调查中,共调查了150名学生. (2)本次调查中喜欢“立定跳远”的学生人数为:150-15-60-40=45(名), 所占百分比为:×100%=30%, 两个统计图补充如下: (3)用A表示男生,B表示女生,列表如下: A1 A2 A3 B1 B2 A1 A1 A2 A1 A3 A1 B1 A1 B2 A2 A2 A1 A2 A3 A2 B1 A2 B2 A3 A3 A1 A3 A2 A3 B1 A3 B2 B1 B1 A1 B1 A2 B1 A3 B1 B2 B2 B2 A1 B2 A2 B2 A3 B2 B1 或画树状图如下: 共有20种情况,其中同性别学生有8种情况,∴刚好抽到同性别学生的概率P== . 赏析:本题(1)中,对C项目所占百分比获取了错误信息,导致出错,C项目所占百分比应是40%,,这也是导致第(2)小题出错的原因.第(3)小题出错的主要原因是对所有等可能情况分析错误,第一次抽取的学生不能放回继续抽取. 易错练 1.希望中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查地点一组数据,如图是根据这组数据绘制的不完整的统计图,则下列说法中,不正确的是( ) A.被调查的学生有200人 B.被调查的学生中喜欢教师职业的有40人 C.被调查的学生中喜欢其他职业的占40% D.扇形中,公务员部分所对应的圆心角为72° 2.一组数据6,5,2,x,4的平均数是4,则这组数据的方差是_____________. 3.下列事件是必然事件的是……………………………………………………………( ) A.有两边及一角对应相等的两个三角形全等 B.方程x2-x+1=0有两个不等实根 C.面积之比为1︰4的两个相似三角形的周长之比也是1︰4 D.圆的切线垂直于过切点的半径 4.将长度为8cm的木棍截成三段,每段长度均为整数厘米.如果截成的三段木棍长度分别相同算为同一种截法,那么截成的三段木棍可构成三角形的概率是___________. 5.在学习“二元一次方程组的解”时,数学张老师设计了一个数学活动.有A、B两组卡片,每组各三张,A组卡片上分别写有0、2、3;B组卡片上分别写有﹣5、﹣1、1.每张卡片除正面写有不同数字外,其余均相同.甲从A组随机抽取一张记为x,乙从B组随机抽取一张记为y. (1)若甲抽出的数字是2,乙抽出的数字是﹣1,它们恰好是方程ax-y=0的解,求a的值; (2)求甲、乙随机抽取一次的数恰好是方程ax-y=5的解的概率.(请用树状图或列表法求解) 参考答案 3.D 解析:两边一角中,一角为夹角时全等,一角不是夹角时不全等,∴A是随机随机; ∵△=(﹣1)2-4×1×1=﹣3<0,方程无实数根,∴B为不可能事件; 面积之比为1︰4的两个相似三角形的相似比为=1︰2,∴周长之比=相似比=1︰2,∴C是不可能事件; D是圆的切线性质定理,∴D是必然事件. 4. 解析:∵将长度为8cm的木棍截成三段,每段长度均为整数厘米,共有5种情况: 1,2,5;1,3,4;2,3,3;4,2,2;1,1,6.能构成三角形的只有一种情况:2,3,3.∴概率为. 5.解:(1)将x=2,y=﹣1代入方程得:2a+1=5,∴a=2; (2)列表如下: 0 2 3 ﹣5 (0,﹣5) (2,﹣5) (3,﹣5) ﹣1 (0,﹣1) (2,﹣1) (3,﹣1) 1 (0,1) (2,1) (3,1)查看更多