- 2021-05-10 发布 |
- 37.5 KB |
- 14页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2017年度中考数学一模试题(北京市大兴区)
北京市大兴区2014年中考一模试卷 数 学 考生须知 1.本试卷共4页,共五道大题,25道小题,满分120分。考试时间120分钟。 2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。 4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。 5.考试结束,将本试卷、答题卡和草稿纸一并交回。 一、选择题(本题共32分,每小题4分) 下面各题均有四个选项,其中只有一个是符合题意的. 1.的相反数是 A.3 B. C. D. 2.北京新机场货运量是每年3 000 000吨,将3 000 000用科学记数法表示应为 A.3×107 B.3×106 C.30×105 D.300×104 3.正五边形各内角的度数为 A.72° B.108° C.120° D.144° 4.若菱形两条对角线的长分别为10cm和24cm,则这个菱形的周长为 A. 13cm B. 26cm C. 34cm D. 52cm 5.从1,2,3,4,5,6,7,8,9,10这十个数中随机取出一个数,取出的数是2的倍数的概率是 A. B. C. D. 6.我市某一周的日最高气温统计如下表: 最高气温() 15 16 17 18 天 数(天) 1 1 2 3 则这组数据的中位数与众数分别是 A.18,17 B.17.5,18 C.17,18 D.16.5,17 7.已知:如图,PA切⊙O于点A,PB切⊙O于点B,如果∠APB=60°,⊙O半径是3,则劣弧AB的长为 A.π B. C.2π D.3π 8.若一列不全为零的数除了第一个数和最后一个数外,每个数都等于前后与它相邻的两数之和,则称这列数具有“波动性质”.已知一列数共有18个,且具有“波动性质”,则这18个数的和为 A.-64 B.0 C.18 D.64 二、填空题(本题共16分,每小题4分) 9.若二次根式有意义,则x的取值范围是 . 10.分解因式:= . 11. 若把代数式 化为的形式,其中m,k为常数,则m+k= . 12.已知正方形ABCD的边长为2,E为BC边的延长线上一点, CE=2,联结AE,与CD交于点F,联结BF并延长与线段DE 交于点G,则BG的长为 . 三、解答题(本题共30分,每小题5分) 13.已知:如图,点B、F、C、E在同一直线上,, , ,垂足分别为、, 联结AC、DF,∠A=∠D. 求证:. 14.计算:+. 15.求不等式组的整数解. 16. 已知2,求()的值 17.在平面直角坐标系xOy中,直线与直线 y= -2x关于y轴对称,直线与反比例函数的图象的一个交点为A(2, m). (1) 试确定反比例函数的表达式; (2) 若过点A的直线与x轴交于点B,且∠ABO=45°,直接写出点B的坐标. 18. 列方程(组)解应用题: 某工厂现在平均每天比原计划平均每天多生产50台机器,现在生产600台机器所需的时间与原计划生产400台机器所需的时间相同,现在平均每天生产多少台机器? 四、解答题(本题共20分,每小题5分) 19.已知:如图,正方形ABCD中,点E为AD边的中点,联结CE. 求cos∠ACE和tan∠ACE的值. 20.某中学开展“绿化家乡、植树造林”活动,为了解全校植树情况,对该校甲、乙、丙、丁四个班级植树的棵树和所占百分比情况进行了调查,将收集的数据整理并绘制成图1和图2两幅不完整的统计图,请根据图中的信息,完成下列问题: (1)这四个班共植树 棵; (2)请补全两幅统计图; (3)若四个班级植树的平均成活率是95%,全校共植树2000棵,请你估计全校种植的树中成活的树大约有多少棵? 21.已知:如图, AB是⊙O的直径,AM和BN是⊙O的两条切线,点D是AM上一点,联结OD , 作BE∥OD交⊙O于点E, 联结DE并延长交BN于点C. (1)求证:DC是⊙O的切线; (2)若AD=l,BC=4,求直径AB的长. 22. 如图,在平面直角坐标系xoy中,E(8,0),F(0 , 6). (1)当G(4,8)时,则∠FGE= °BD (2)在图中的网格区域内找一点P,使∠FPE=90°且四边形OEPF被 过P点的一条直线分割成两部分后,可以拼成一个正方形. 要求:写出点P点坐标,画出过P点的分割线并指出分割线(不必说明理由,不写画法). 五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. 在平面直角坐标系xOy中,已知二次函数的图象与x轴的正半轴交于A 、B两点(点A在点B的左侧),与y轴交于点C .点A和点B间的距离为2, 若将二次函数的图象沿y轴向上平移3个单位时,则它恰好过原点,且与x轴两交点间的距离为4. (1)求二次函数的表达式; (2)在二次函数的图象的对称轴上是否存在一点P,使点P到B、C两点距离之差最大?若存在,求出点P坐标;若不存在,请说明理由; (3)设二次函数的图象的顶点为D,在x轴上是否存在这样的点F,使得?若存在,求出点F的坐标;若不存在,请说明理由. 24. 在等边三角形ABC中,AD⊥BC于点D. (1)如图1,请你直接写出线段AD与BC之间的数量关系: AD= BC ; (2)如图2,若P是线段BC上一个动点(点P不与点B、C重合),联结AP,将线段AP绕点A逆时针旋转60°,得到线段AE,联结CE,猜想线段AD、CE、PC之间的数量关系,并证明你的结论; (3)如图3,若点P是线段BC延长线上一个动点,(2)中的其他条件不变,按照(2)中的作法,请在图3中补全图形,并直接写出线段AD、CE、PC之间的数量关系. 25.如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“匀称三角形” (1)已知:如图1,在△ABC中,∠C=90°,,. 求证:△ABC是“匀称三角形”; 图1 (2)在平面直角坐标系xoy中,如果三角形的一边在x轴上,且这边的中线恰好等于这边的长,我们又称这个三角形为“水平匀称三角形” .如图2,现有10个边长是1的小正方形组成的长方形区域记为G, 每个小正方形的顶点称为格点,A(3,0),B(4,0),若C、D(C、D两点与O不重合)是x轴上的格点,且点C在点A的左侧. 在G内使△PAC与△PBD都是“水平匀称三角形”的点P共有几个?其中是否存在横坐标为整数的点P,如果存在请求出这个点P的坐标,如果不存在请说明理由. 北京市大兴区2014年中考一模试卷 初三数学答案及评分标准 一、选择题(本题共32分,每小题4分) 题号 1 2 3 4 5 6 7 8 答案 A B B D D C C B 二、填空题(本题共16分,每小题4分) 9 10 11 12 -5 三、解答题(本题共30分,每小题5分) 13.证明:∵, ∴. 即. …………………………………………………1分 ∵,, ∴∠B=∠E=90°. …………………………………………………2分 又∠A=∠D, ∴△ABC≌△DEF ……………………………………………………4分 ∴. …………………………………………………………5分 14.解:+ ……………………………4分 ……………………………………………………………5分 15.解:解不等式 ①,得x<2 . ………………………………………………1分 解不等式 ②,得x>-1. ……………………………………………2分 ∴原不等式组的解集是-1<x<2. …………………………………4分 ∴原不等式组的整数解为0,1. ……………………………………5分 16.解: ()(x-2) =(x-2) …………………………………………………2分 = ………………………………………………………………………3分 ∵ 2x2-x-2=0, ∴2x2=x+2. ………………………………………………………………4分 ∴ 原式=. …………………………………………………………………5分 17. 解:由题意,直线与直线y=-2x关于y轴对称, ∴直线的解析式为y= 2x. ………………………………………………………1分 ∵点A(2,m)在直线上, ∴m=2×2=4. ∴点A的坐标为(2,4). ………………………………………………………2分 又∵点A(2,4)在反比例函数的图象上, ∴, ∴k=8. ∴反比例函数的解析式为. ………………………………………………3分 (2) (6,0)或(-2,0). ……………………………………………5分 18. 解:设现在平均每天生产x台机器,则原计划平均每天生产(x-50)台机器.依题意,得: ……………………………………………2分 解得:x=150 ……………………………………………3分 经检验:x=150是所列方程的解且符合题意. …………………………………… 4分 答:现在平均每天生产150台机器. ……………………………………………5分 四、解答题(本题共20分,每小题5分) 19.解:过点作于点, ∵四边形是正方形, ∴平分, . ∴,. ∵是中点, ∴. …………………………1分 设,则,,. 在Rt△AEF中,,.……2分 ∴. ………………………………3分 ∴,…………………………………………4分 . …………………………………………5分 20. 解:(1)200; ……………………………1分 (2) ……………………4分 图1 图2 (3)根据题意得:2000×95%=1900(棵). 答:全校种植的树中成活的树大约有1900棵. ……………………………5分 21.(1)证明:联结OE, 在⊙O中, ∵, ∴ ∵OD∥BE, ∵OA=OE, OD=OD . ∴ ∵AM是⊙O的切线,切点为A, ∴, ∵OE是⊙O的半径 ⊙O的切线 ……………………………………………3分 (2) 解:过点D作BC的垂线,垂足为H. ∵BN切⊙O于点B, ∴ 四边形ABHD是矩形, ∴AD=BH=1, AB=DH ………………………………………………………4分 AD、CB、CD分别切⊙O于点A、B、E, ∴AD=ED=1. BC=CE=4, ∴DC=DE+CE=1+4=5 在Rt△DHC中, 22 .(1)90 ……………………………………1分 (2)P (7,7) ……………………………….3分 PM是分割线. …………………………………………4分 F ………………………..5分 M E O 五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1)∵平移后的函数图象过原点且与x轴两交点间的距离为4, ∴平移后的函数图象与x轴两交点坐标为(0,0),(4,0)或(0,0),(-4,0) ∴它的对称轴为直线x=2或x=-2. ∵抛物线与x轴的正半轴交于A、B两点, ∴抛物线关于直线x=2对称, ∵它与x轴两交点间的距离为2,且点A 在点B的左侧. ∴其图象与x轴两交点的坐标为A(1,0)、B(3,0). 由题意知,二次函数的图象过C(0,-3),……2分 ∴设. …………………………3分 (2)∵点B关于直线x=2的对称点为A(1,0) 设直线AC的解析式为 ∴直线AC的解析式为 ………………………….4分 直线AC与直线x=2的交点P就是到B、C两点距离之差最大的点. 当x=2时,y=3 ∴点P的坐标为(2,3) ………………………..5分 (3)在x轴上存在这样的点F,使得DFB=DCB 抛物线的顶点D的坐标为(2,1) 设对称轴与x轴的交点为点E ∵E(2,0), ∴符合题意的点F的坐标为F1(-1,0)或F2(5,0)……………7分 24.解:(1) ……………………1分 (2)AD=(CE+PC). ……………2分 理由如下: ∵线段AP绕点A逆时针旋转60°,得到线段AE, ∴∠PAE=60°,AP=AE, ∵等边三角形ABC, ∴∠BAC=60°,AB=AC ∴∠BAC﹣∠PAC=∠PAE﹣∠PAC, ∴∠BAP=∠CAE, 在△ABP和△ACE中 , ∴△ABP≌△ACE, ……………………3分 ∴BP=CE, ∵BP+PC=BC, ∴CE+ PC=BC, ∵AD=BC, ∴AD=(CE+PC). ……………………4分 (3)如图, ………………………………5分 AD=(CE-PC). ……………………7分 25.解: 解:(1) 如图1,作AC边的中线BD交AC于点D, D A B C 图1 ∵∠C=90°,BC= 2,AB = 2, ∴AC = = 4. ∴AD=CD=2. BD = = 4 ∴AC = BD, ∴ △ABC是“匀称三角形”…………………3分 (2)①在G内使△PAC与△PBD都是“水平匀称三角形”的点P共有 4 个 ……………….4分 ②在G内使△PAC与△PBD都是“水平匀称三角形”的点P中,存在横坐标为整数的点P. 如图,当C点坐标为(2,0),D点坐标为(3,0)与A重合时,△PAC与△PBD是水平匀称三角形. ∵A(3,0),C(2,0), B(4,0),D(3,0) ∴AC=1,BD=1 设PM、PN分别为CA、DB上的中线, ∴AM= AC= , AN= BD= , ∴AM=AN= ∴点A为MN的中点. ∵△PAC与△PBD是“水平匀称三角形” ∴PM=AC=1,PN=BD=1 ∴PM=PN=1 ∴PA⊥MN,即PA与x轴垂直 ………………………………………6分 ∵A(3,0) ∴P点横坐标为整数3. 在Rt△PMA中,PM=1,AM= ∴PA= ∴P(3, ) 所以,当C点坐标为(2,0),D点坐标为(3,0)与A重合时,△PAC与△PBD是水平匀称三角形且P点横坐标为整数. ……………………………………………………………………8分 解法2. 在长方形区域内使△PAC与△PBD都是“水平匀称三角形”的点P中,存在横坐标为整数的点P. 如图,当C点坐标为(2,0),D点坐标为(3,0)与A重合,P点横坐标为3时 ∵A(3,0),P点横坐标为3 ∴PA与x轴垂直 ∵A(3,0),C(2,0), B(4,0),D(3,0) ∴AC=1,BD=1 设AC中点为M,BD中点为N. ∴AM=AC=,AN= BD= ∴AM=AN 要使△PAC与△PBD是水平匀称三角形 只需PM=AC=1,PN=BD=1 ∵PA与x轴垂直 在Rt△PMA中,PM=1,AM= ∴PA= ∴P(3,) 所以,当C点坐标为(2,0),D点坐标为(3,0)与A重合,△PAC与△PBD是水平匀称三角形且P点横坐标为整数.查看更多