小学数学精讲教案5_5_2 带余除法(二) 学生版

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

小学数学精讲教案5_5_2 带余除法(二) 学生版

‎5-5-2‎‎.带余除法(二)‎ 教学目标 1. 能够根据除法性质调整余数进行解题 2. 能够利用余数性质进行相应估算 3. 学会多位数的除法计算 4. 根据简单操作进行找规律计算 知识点拨 带余除法的定义及性质 ‎1、定义:一般地,如果a是整数,b是整数(b≠0),若有a÷b=q……r,也就是a=b×q+r, ‎ ‎0≤r<b;我们称上面的除法算式为一个带余除法算式。这里:‎ ‎(1)当时:我们称a可以被b整除,q称为a除以b的商或完全商 ‎(2)当时:我们称a不可以被b整除,q称为a除以b的商或不完全商 一个完美的带余除法讲解模型:如图 这是一堆书,共有a本,这个a就可以理解为被除数,现在要求按照b本一捆打包,那么b就是除数的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。‎ 这个图能够让学生清晰的明白带余除法算式中4个量的关系。并且可以看出余数一定要比除数小。‎ ‎2、余数的性质 ‎⑴ 被除数除数商余数;除数(被除数余数)商;商(被除数余数)除数;‎ ‎⑵ 余数小于除数.‎ ‎3、解题关键 理解余数性质时,要与整除性联系起来,从被除数中减掉余数,那么所得到的差就能够被除数整除了.在一些题目中因为余数的存在,不便于我们计算,去掉余数,回到我们比较熟悉的整除性问题,那么问题就会变得简单了.‎ 例题精讲 模块一、带余除法的估算问题 【例 1】 修改31743的某一个数字,可以得到823的倍数。问修改后的这个数是几? ‎ 【例 1】 有48本书分给两组小朋友,已知第二组比第一组多5人.如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够.如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够.问:第二组有多少人? ‎ 【例 2】 一个两位数除以13的商是6,除以11所得的余数是6,求这个两位数.‎ 【例 3】 在小于1000的自然数中,分别除以18及33所得余数相同的数有多少个?(余数可以为0) ‎ 【例 4】 托玛想了一个正整数,并且求出了它分别除以3、6和9的余数.现知这三余数的和是15.试求该数除以18的余数.‎ 模块二、多位数的余数问题 【例 5】 除以13所得余数是_____.‎ 【巩固】 的余数是多少?‎ 【例 1】 除以41的余数是多少?‎ 【例 2】 已知,问:除以13所得的余数是多少?‎ 模块三、找规律计算 【例 3】 科学家进行一项实验,每隔5小时做一次记录。做第十二次记录时,挂钟的时针恰好指向9,问做第一次记录时,时针指向几?‎ 【例 4】 一筐苹果分成小盒包装,每盒装只,剩只;每盒装只,剩只。每盒装只,剩 只。‎ 【例 5】 著名的斐波那契数列是这样的:1、1、2、3、5、8、13、21……这串数列当中第2008个数除以3所得的余数为多少?‎ 【巩固】 有一列数:1,3,9,25,69,189,517,…其中第一个数是1,第二个数是3,从第三个数起,每个数恰好是前面两个数之和的2倍再加上1,那么这列数中的第2008个数除以6,得到的余数是 .‎ 【巩固】 有一列数排成一行,其中第一个数是3,第二个数是10,从第三个数开始,每个数恰好是前两个数的和,那么第1997个数被3除所得的余数是多少?‎ 【例 1】 有一串数:1,1,2,3,5,8,……,从第三个数起,每个数都是前两个数之和,在这串数的前2009个数中,有几个是5的倍数?‎ 【例 2】 将七位数“1357924”重复写287次组成一个2009位数“13579241357924…”。删去这个数中所有位于奇数位上的数字;按上述方法一直删除下去直到剩下一个数字为止,则最后剩下的数字是 ‎ 【例 3】 ‎30粒珠子依8粒红色、2粒黑色、8粒红色、2粒黑色…的次序串成一圈,一只蚂蚱从第2粒黑珠子起跳,每次跳过6粒珠子落在下一粒珠子上,这只蚂蚱至少要跳 次才能落到黑珠子上。‎ 【例 4】 有这样一类2009位数,它们不含有数字0,任何相邻两位(按照原来的顺序)组成的两位数都有一个约数和20相差1,这样的2009位数共有________个.‎ 【例 1】 在两位数10,11,…,98,99中,将每个被7除余2的数的个位与十位之间添加一个小数点,其余的数不变.问:经过这样改变之后,所有数的和是多少?‎ 模块四、特殊的数字9‎ 【例 2】 将从1开始的到103的连续奇数依次写成一个多位数:A=13579111315171921……9799101103。则数a共有_____位,数a除以9的余数是___。‎
查看更多

相关文章

您可能关注的文档