- 2022-02-11 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
小学数学精讲教案5_5_3 余数性质(一) 教师版
5-5-3.余数性质(三) 教学目标 1. 学习余数的三大定理及综合运用 2. 理解弃9法,并运用其解题 知识点拨 一、三大余数定理: 1.余数的加法定理 a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。 例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。 例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数为2 2.余数的加法定理 a与b的差除以c的余数,等于a,b分别除以c的余数之差。 例如:23,16除以5的余数分别是3和1,所以23-16=7除以5的余数等于2,两个余数差3-1=2. 当余数的差不够减时时,补上除数再减。 例如:23,14除以5的余数分别是3和4,23-14=9除以5的余数等于4,两个余数差为3+5-4=4 3.余数的乘法定理 a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。 例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。 当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。 例如:23,19除以5的余数分别是3和4,所以23×19除以5的余数等于3×4除以5的余数,即2. 乘方:如果a与b除以m的余数相同,那么与除以m的余数也相同. 二、弃九法原理 在公元前9世纪,有个印度数学家名叫花拉子米,写有一本《花拉子米算术》,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的: 例如:检验算式 1234除以9的余数为1 1898除以9的余数为8 18922除以9的余数为4 678967除以9的余数为7 178902除以9的余数为0 这些余数的和除以9的余数为2 而等式右边和除以9的余数为3,那么上面这个算式一定是错的。 上述检验方法恰好用到的就是我们前面所讲的余数的加法定理,即如果这个等式是正确的,那么左边几个加数除以9的余数的和再除以9的余数一定与等式右边和除以9的余数相同。 而我们在求一个自然数除以9所得的余数时,常常不用去列除法竖式进行计算,只要计算这个自然数的各个位数字之和除以9的余数就可以了,在算的时候往往就是一个9一个9的找并且划去,所以这种方法被称作“弃九法”。 所以我们总结出弃九法原理:任何一个整数模9同余于它的各数位上数字之和。 以后我们求一个整数被9除的余数,只要先计算这个整数各数位上数字之和,再求这个和被9除的余数即可。 利用十进制的这个特性,不仅可以检验几个数相加,对于检验相乘、相除和乘方的结果对不对同样适用 注意:弃九法只能知道原题一定是错的或有可能正确,但不能保证一定正确。 例如:检验算式9+9=9时,等式两边的除以9的余数都是0,但是显然算式是错误的 但是反过来,如果一个算式一定是正确的,那么它的等式2两端一定满足弃九法的规律。这个思想往往可以帮助我们解决一些较复杂的算式谜问题。 例题精讲 模块一、余数的加减法定理 【例 1】 幼儿园的老师给班里的小朋友送来40只桔子,200块饼干,120块奶糖。平均分发完毕,还剩4只桔子,20块饼干,12粒奶糖。这班里共有_______位小朋友。 【考点】余数的加减法定理 【难度】1星 【题型】填空 【关键词】走美杯,4年级,决赛,第3题,8分 【解析】 40-4=36,200-20=180,120-12=108。小朋友的人数应是36,180,108的大于20的公约数,只有36。 【答案】 【例 2】 在1995,1998,2000,2001,2003中,若其中几个数的和被9除余7,则将这几个数归为一组.这样的数组共有______组. 【考点】余数的加减法定理 【难度】2星 【题型】填空 【关键词】少年数学智力冬令营 【解析】 1995,1998,2000,2001,2003除以9的余数依次是6,0,2,3,5.因为,,所以这样的数组共有下面4个:, , ,. 【答案】 【例 3】 号码分别为101,126,173,193的4个运动员进行乒乓球比赛,规定每两人比赛的盘数是他们号码的和被3除所得的余数.那么打球盘数最多的运动员打了多少盘? 【考点】余数的加减法定理 【难度】2星 【题型】解答 【解析】 本题可以体现出加法余数定理的巧用。计算101,126,173,193除以3的余数分别为2,0,2,1。那么任意两名运动员的比赛盘数只需要用2,0,2,1两两相加除以3即可。显然126运动员打5盘是最多的。 【答案】 【例 4】 有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是______. 【考点】余数的加减法定理 【难度】3星 【题型】填空 【关键词】小学数学奥林匹克 【解析】 ,,除数应当是290的大于17小于70的约数,只可能是29和58,,,所以除数不是58.,,,,所以除数是 【答案】 【巩固】 用自然数n去除63,91,129得到的三个余数之和为25,那么n=________. 【考点】余数的加减法定理 【难度】3星 【题型】填空 【关键词】小学数学奥林匹克 【解析】 n能整除.因为,所以n是258大于8的约数.显然,n不能大于63.符合条件的只有43. 【答案】 【例 1】 如果1=1!,1×2=2!,1×2×3=3!……1×2×3×……×99×100=100!那么1!+2!+3!+……+100!的个位数字是多少? 【考点】余数的加减法定理 【难度】3星 【题型】解答 【解析】 从5!开始个位数字都是0了因此只需要计算前4个数,1!+2!+3!+4!=1+2+6+24=33所以末位数字一定是3 【答案】 【例 2】 六名小学生分别带着14元、17元、18元、21元、26元、37元钱,一起到新华书店购买《成语大词典》.一看定价才发现有5个人带的钱不够,但是其中甲、乙、丙3人的钱凑在一起恰好可买2本,丁、戊2人的钱凑在一起恰好可买1本.这种《成语大词典》的定价是________元. 【考点】余数的加减法定理 【难度】3星 【题型】填空 【关键词】小数报 【解析】 六名小学生共带钱133元.133除以3余1,因为甲、乙、丙、丁、戊的钱恰好能买3本,所以他们五人带的钱数是3的倍数,另一人带的钱除以3余1.易知,这个钱数只能是37元,所以每本《成语大词典》的定价是 (元) . 【答案】 【巩固】 商店里有六箱货物,分别重15,16,18,19,20,31千克,两个顾客买走了其中的五箱.已知一个顾客买的货物重量是另一个顾客的2倍,那么商店剩下的一箱货物重量是________千克. 【考点】余数的加减法定理 【难度】3星 【题型】填空 【关键词】小学数学奥林匹克 【解析】 两个顾客买的货物重量是的倍数.,剩下的一箱货物重量除以3应当余2,只能是20千克. 【答案】 【巩固】 六张卡片上分别标上1193、1258、1842、1866、1912、2494六个数,甲取3张,乙取2张,丙取1张,结果发现甲、乙各自手中卡片上的数之和一个人是另—个人的2倍,则丙手中卡片上的数是________.(第五届小数报数学竞赛初赛) 【考点】余数的加减法定理 【难度】3星 【题型】填空 【关键词】小学数学奥林匹克 【解析】 根据“甲、乙二人各自手中卡片上的数之和一个人是另一个人的2倍”可知,甲、乙手中五张卡片上的数之和应是3的倍数.计算这六个数的总和是, 10565除以3余2;因为甲、乙二人手中五张卡片上的数之和是3的倍数,那么丙手中的卡片上 的数除以3余2.六个数中只有1193除以3余2,故丙手中卡片上的数为1193. 【答案】 【例 3】 从1,2,3,4,…,2007中取N个不同的数,取出的数中任意三个的和能被15整除.N最大为多少? 【考点】余数的加减法定理 【难度】3星 【题型】解答 【关键词】走美杯,初赛,六年级,第8题 【解析】 取出的N个不同的数中,任意三个的和能被15整除,则其中任意两个数除以15的余数相同,且这个余数的3倍能被15整除,所以这个余数只能是0,5或者10.在中,除以15的余数为0的有,,…,,共有个;除以15的余数为5的有,,…,,共有134个;除以15的余数为10的有,,…,,共有134个.所以N最大为134. 【答案】 【例 4】 一个家庭,有父、母、兄、妹四人,他们任意三人的岁数之和都是3的整数倍,每人的岁数都是一个质数,四人岁数之和是100,父亲岁数最大,问:母亲是多少岁? 【考点】余数的加减法定理 【难度】3星 【题型】解答 【关键词】香港圣公会,小学数学奥林匹克 【解析】 从任意三人岁数之和是3的倍数,100除以3余1,就知四个岁数都是型的数,又是质数.只有7,13,19,31,37,43,就容易看出:父43岁,母37岁,兄13岁,妹7岁. 【答案】 【例 1】 有三所学校,高中A校比B校多10人,B校比C校多10人.三校共有高中生2196人.有一所学校初中人数是高中人数的2倍;有一所学校初中人数是高中人数的1.5倍;还有一所学校高中、初中人数相等.三所学校总人数是5480人,那么A校总人数是________人. 【考点】余数的加减法定理 【难度】3星 【题型】填空 【关键词】香港圣公会,小学数学奥林匹克 【解析】 三所学校的高中生分别是:A校742人,B校732人,C校722人.如果A校或C校初中人数是高中人数的1.5倍,该校总人数是奇数,而按照给出条件得出其他两校总人数都是偶数,与三校总人数5480是偶数矛盾,因此只能是B校的初中人数是高中人数的1.5倍.三校初中的总人数是,被3除余2;732被3整除,722被3除余2,742被3除余1.从余数来看,,就断定初中人数是高中人数的2倍,只能是C校.所以,A校总人数是 (人) . 【答案】 模块二、余数的乘法定理 【例 2】 求的余数. 【考点】余数的乘法定理 【难度】3星 【题型】解答 【解析】 因为,,,根据同余定理(三), 的余数等于的余数,而, ,所以的余数为5. 【答案】 【巩固】 求除以17的余数. 【考点】余数的乘法定理 【难度】3星 【题型】解答 【关键词】华杯赛 【解析】 先求出乘积再求余数,计算量较大.可先分别计算出各因数除以17的余数,再求余数之积除 以17的余数.除以17的余数分别为2,7和11,. 【答案】 【巩固】 求被7除的余数. 【考点】余数的乘法定理 【难度】3星 【题型】解答 【解析】 方法一:先将算出以后,即.再求得此数被7除的余 数为1. 方法二:因为除以7的余数为3,除以7的余数为1,由“同余的可乘性”知:除以7的余数为.又因为1993除以7的余数为5,所以除以7的余数等于即15除以7的余数,算出被7除的余数为1. 方法三:利用余数判别法⑹,算出,奇数节的数之和与偶数节的数之和的差即,36除以7的余数为1,即被7除的余数为1. 【答案】 【例 3】 求除以9的余数. 【考点】余数的乘法定理 【难度】3星 【题型】解答 【分析】 ,,,除以9的余数等于. 【答案】 【例 1】 一个数被7除,余数是3,该数的3倍被7除,余数是 。 【考点】余数的乘法定理 【难度】3星 【题型】填空 【关键词】希望杯,五年级,初赛,第3题,5分 【解析】 余数是3×3÷7的余数,为2 【答案】 【例 2】 在图表的第二行中,恰好填上这十个数,使得每一竖列上下两个因数的乘积除以11所得的余数都是3. 【考点】余数的乘法定理 【难度】3星 【题型】填空 【解析】 因为两个数的乘积除以11的余数,等于两个数分别除以11的余数之积.因此原题中的 可以改换为,这样上下两数的乘积除以11余3就容易计算了.我们得到下面的结果: 进而得到本题的答案是: 【答案】 【例 3】 除以7的余数是多少? 【考点】余数的乘法定理 【难度】3星 【题型】解答 【关键词】实验中学 【解析】 由于,而1001是7的倍数,所以这个乘积也是7的倍数,故除以7的余数是0; 【答案】 【例 4】 求的余数 【考点】余数的乘法定理 【难度】3星 【题型】解答 【解析】 本题为余数乘法定理的拓展模式,即数字的乘方与一个数相除的余数情况。由6443÷19余2,求原式的余数只要求的余数即可。但是如果用2÷19发现会进入一个死循环,因为这时被除数比除数小了,所以可以进行适当的调整,, 64÷19余数为7,那么求的余数就转化为求的余数,即49÷19的余数。 49÷19余数为11,所以原式的余数为11. 【答案】 【巩固】 求除以7的余数. 【考点】余数的乘法定理 【难度】3星 【题型】解答 【解析】 法一:由于 (143被7除余3),所以 (被7除所得余数与被7除所得余数相等),而,(729除以7的余数为1), 所以,故除以7的余数为5. 法二:计算被7除所得的余数可以用找规律的方法,规律如下表: 于是余数以6为周期变化.所以. 【答案】 【巩固】 求写成十进制数时的个位数. 【考点】余数的乘法定理 【难度】3星 【题型】解答 【解析】 要想把具体数字算出来显然是不可能的,由于题目可以转化为求除以10的余数.看到题目里面有个很大的乘方,我们想到利用“同余的乘方性”.可先确定n,使除以10的余数为1. 通过尝试可知,最小的n为4.因为,除以10的余数等于除以10的余数即1,除以10的余数为9,所以,除以10的余数为,即写成十进制数时的个位数为9. 【答案】 【巩固】 的个位数字是________. 【考点】余数的乘法定理 【难度】3星 【题型】填空 【关键词】迎春杯,五年级,初赛,第4题 【解析】 易知2009的个位数字是9,的个位数字是1,的个位数字是9,的个位数字是1,两个为一周期,则的个位数字是1. 【答案】 【巩固】 2007×2007×…×2007(2008个2007)的个位数字是 。 【考点】余数的乘法定理 【难度】3星 【题型】填空 【关键词】走美杯,初赛,六年级,第1题 【解析】 可以看出2007的乘方其尾数是7、9、3、1四个数字循环的,2008个2007相乘,其尾数为1. 【答案】 【例 1】 今天是星期四,天之后将是星期几? 【考点】余数的乘法定理 【难度】3星 【题型】解答 【解析】 先求较小的n,使除以7的余数为1. 10除以7余3,除以7余2,除以7余,除以7余,除以7的余数等于除以7的余数等于1.所以,除以7的余数等于除以7的余数等于,故天之后,应是星期一. 【答案】星期一 【例 2】 求的最后两位数. 【考点】余数的乘法定理 【难度】3星 【题型】解答 【解析】 即考虑除以100的余数.由于,由于除以25余2,所以除以25余8, 除以25余24,那么除以25余1;又因为除以4余1,则除以4余1;即能被4 和25整除,而4与25互质,所以能被100整除,即除以100余1,由于,所以除以100的余数即等于除以100的余数,而除以100余29,除以100余43,,所以除以100的余数等于除以100的余数,而除以100余63,所以除以100余63,即的最后两位数为63. 【答案】 【例 3】 求的所有自然数中,有多少个整数a使与被7除余数相同? 【考点】余数的乘法定理 【难度】3星 【题型】解答 【解析】 让我们用列表的方法来寻找与被7除余数的规律: a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 被7除的余数 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 2 4 1 被7除的余数 1 4 2 2 4 1 0 1 4 2 2 4 1 0 1 4 2 2 4 1 0 从上表可以看出: 被7除的余数是2,4,1,2,4,1,2,4,1,,每3个一循环; 被7除的余数是1,4,2,2,4,1,0,1,4,2,2,4,1,0,,每7个一循环. 所以能同时满足这两个条件的规律,必须是3和7的公倍数,即为21的倍数,也就是使与被7除的余数相同的数,在自然数列中,是每21一个循环,其中有6个余数相同,分别是每个循环中的第2,4,5,6,10,15个数. 又因为,所以,在的所有自然数中,能使与被7除余数相同的数共有:(个). 【答案】查看更多