六年级上册数学苏教版知识要点

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

六年级上册数学苏教版知识要点

一长方体和正方体一、长方体的认识易错点:误认为一个长方体中1.认识长方体的面、棱、顶点。最多有4条相等的棱。这是错误的,(1)从不同的角度观察同一个长方体。一定要注意长方体的6个面不一把长方体放在桌面上,无论从哪个角度观察,最多只...定都是长方形,也可能有2个相对能同时观察到长方体的三个面。..............的面是正方形。当长方体有2个相(2)长方体的棱和顶点。对的面是正方形时,就有8条棱长长方体两个面相交的线叫作长方体的棱,三条棱相度相等。交的点叫作长方体的顶点。2.长方体的特征。直观图中的实线表示从某个长方体是由6个长方形(也可能有2个相对的面是角度能够看到的棱,虚线表示看不正方形)围成的立体图形,它有6个面、12条棱和8个顶到的棱。点。在一个长方体中,相对的面完全相同,相对的棱长度相等。长方体12条棱的长度和叫作3.长方体长、宽、高的含义。长方体的棱长总和。长方体的棱长长方体相交于同一顶点的三条棱的长度..................,分别叫作....总和=(长+宽+高)×4。它的长、宽、高。........4.长方体的长、宽、高不是固定不变的,它与长方体的摆放方式有关。长方体相交于同一顶点的三条棱中,通常把水平方向的两条棱分别叫作它的长和宽,把竖直易错点:误认为有6个面、12方向的一条棱叫作它的高。条棱、8个顶点的立体图形不是长二、正方体的认识方体就是正方体。这是不正确的,1.正方体也叫立方体。它是由6个完全相同的正方一定要注意有6个面、12条棱、8形围成的立体图形。它的6个面是完全相同的正方形,12个顶点并不代表它就是长方体或条棱的长度都相等,有8个顶点。正方体,要看它是否具备长方体或2.正方体的长、宽、高相等,都叫正方体的棱长。正方体的所有特征,如下图,这个立3.长方体和正方体的特征的异同。体图形既不是长方体,也不是正方①相同点:都有6个面、12条棱、8个顶点,相对的体。面完全相同,相对的棱长度相等。②不同点:长方体的6个面都是长方形(也可能有2个相对的面是正方形);一般情况下,棱有3组,每组4条棱长度相等。正方体的6个面是完全相同的正方形;每条棱的长度都相等。正方体的棱长总和:棱长×12。三、正方体、长方体的展开图正方体具有长方体的一切特1.把一个正方体沿一条棱剪开,如下图所示。征,正方体是特殊的长方体。正方体的展开图是由6个完全相同的正方形组成的,可以通过观察、折叠找到3组相对的面。同一个立体图形,沿不同的棱剪开,得到的展开图不同。2.沿长方体的棱把长方体剪开,展开图中有3组相技巧:对的面,相对的面完全相同.........,相对的面完全隔开。.........正方体有6个相同的面,可以第1页 通过观察、折叠找到3组相对的面。长方体有3组相对的面,可以通过看是否完全隔开,完全隔开的一组面就是相对的两个面。3.沿着正方体(或长方体)的棱将它剪开,可以把正方体(或长方体)展开成一个平面图形,这个平面图形就是正方体(或长方体)的展开图。在展开图中,正方体的6个面完全相同(长方体相对的面完全相同),相对的面完全当所求的长方体的表面积是6隔开。个面的面积时,先分别求出每组相四、长方体和正方体表面积的意义及计算方法对的面中一个面的面积,相加后再1.表面积的意义:长方体(或正方体)6个面的总面积,乘2较简便。.................叫作它的表面积。........2.长方体和正方体表面积的计算方法。(1)长方体的表面积.......=.长.×.宽.×.2+..长.×.高.×.2+..宽.×.高.×.2=...(长.×.宽.+.长.×.高.+.宽.×.高..)×.2.。.如果用S表示长方体的表面积,用a、b、h分别表示长方体的长、宽、高,那么长方体表面积的计算公式是举例:大厅里有8根高为5米S=2ab+2ah+2bh或S=(ab+ah+bh)×2。的方柱需要涂油漆,方柱的横截面(2)正方体的表面积.......=.棱长..×.棱长..×.6.。.是边长为0.5米的正方形,若1千克油漆可以涂5平方米,则涂这8根如果用S表示正方体的表面积,用a表示棱长,那么方柱需要多少千克油漆?2正方体表面积的计算公式是S=6a。错五、运用长方体和正方体表面积的计算方法解决实解:(0.5×0.5×2+0.5×5×4)×8÷5×1=际问题16.8(千克)答:涂这8根方柱需要16.8千1.求长方体和正方体物体的表面积时,最关键的是克油漆。要根据实际情况确定好求几个面的面积和。正解:0.5×5×4×8÷5×1=16(千2.在实际生活中,并不是所有长方体形状的物体都克)答:涂这8根方柱需要16千克有6个面,如长方体的鱼缸只有5个面,通风管只有4个油漆。面。因此,在计算时要根据实际情况解题。六、体积和容积的意义一个容器容积的大小与它所1.物体所占空间的大小叫作物体的体积。能盛装物体的多少有关。因为容器.................都有一定的厚度,所以一个容器的2.能盛装其他物体的都可以称为容器,不能盛装其体积一般大于它的容积。他物体的都不是容器。3.容器所能容纳物体的体积叫作容器的容积。...................4.有容积的物体一定有体积,但有体积的物体不一定有容积。七、体积单位第2页 1.棱长是1厘米的正方体,体积是1立方厘米。并不是只有棱长是1cm、12.棱长是1分米的正方体,体积是1立方分米。dm、1m的正方体的体积才是13333.棱长是1米的正方体,体积是1立方米。cm、1dm和1m。4.常用的体积单位有立方厘米............、.立方分米和立方米.........,333用字母表示分别是........cm...、.dm...和.m..。.八、容积单位1.容积单位的使用方法。易错点:误认为容积就是体积,计量容积,一般就用体积单位。计量液体的体积,如这是不对的,一定要注意“容积”与水、油等,通常用升或毫升作单位。升和毫升,用字母表“体积”的不同。如一本书有体积,示分别为L和mL,其中1L=1000mL。却没有容积。2.容积单位的换算。331.dm...=1..L.1.cm...=1..mL..较大容器盛装液体时用“升”作高级单位向低级单位转换用乘法计算;低级单位向单位,较小容器盛装液体时用“毫升”高级单位转换用除法计算。作单位。3.“容积”与“体积”的区别。(1)意义不同。巧记:体积是指物体所占空间的大小,而容积是指容器所体积单位常用到,相邻进率是能容纳物体的体积。一个物体有体积,但它不一定有容1000。积。高级单位化低级,要把此数乘(2)测量方法不同。1000。求物体的体积是从物体的外面测量它的长、宽、高低级单位化高级,除以1000进行计算,而求物体的容积则必须从里面来测量它的长、把数算。宽、高,然后计算。因此,对于同一个物体,一般来说,它的转换过程要细心,掌握进率是容积要比体积小。关键。(3)单位名称不完全相同。体积单位一般用立方米、立方分米、立方厘米。固体、气体的容积单位与体积单位相同,而液体的容积单位一般用升、毫升。九、长方体体积公式的推导明确摆成不同形状长方体的1.以取12个1立方厘米的小正方体,摆出不同形状长、宽、高分别是多少。的长方体为例,如下图:1立方厘米的小正方体的边长是1厘米。长方体的长、宽、高由几个小正方体摆成,它的长、宽、高就分别是几厘米,它的体积正好等于摆成长方体所需小正方体的个数。每个小正方体的体积是1立方厘米,每个长方体是由12个小正方体摆成的,所以每个长方体的体积都是12立方厘米。第3页 2.填写表格。长宽高小正方体体积3/cm/cm/cm的个数/cm长方12111212体①长方6211212体②长方4311212体③长方3221212体④3.(1)在摆成的长方体中,每排小正方体的个数相当于长方体的长;排数相当于长方体的宽;层数相当于长方举例:如果一个长方体的长、体的高。(2)长方体所含小正方体(体积单位)的个数正好等宽、高都扩大到原来的2倍,那么于长方体长、宽、高的乘积。4.长方体体积公式的字母表达式。3它的体积就扩大到原来的2倍,即如果用V表示长方体的体积,用a、b、h分别表示长方体的长、宽、高,那么长方体的体积公式可以写成8倍;反之,如果一个长方体的长、V=abh。1宽、高都缩小到原来的,那么它的211体积就缩小到原来的3,即。283长方体的体积......=.长.×.宽.×.高..,字母公式为.....V=abh.....。.a·a·a也可以写成“a”,即35.拓展提高。a·a·a=a,读作“a的立方”,表示3个a相乘。因此,正方体的体积公式一当长方体的长、宽、高都扩大到原来的n倍时,它33般写成V=a。写a时,“3”要写在a的右上角,且要略小一些。33的体积就扩大到原来的n(n×n×n=n)倍;当长方体的举例:如果一个正方体的棱长1长、宽、高都缩小到原来的时,它的体积就缩小到原来݊扩大到原来的2倍,那么它的体积11111的3××ൌ3。݊݊݊݊݊就扩大到原来的8倍;反之,如果一十、正方体体积公式的推导1.长方体的体积=长×宽×高1个正方体的棱长缩小到原来的,那2↓↓↓正方体的体积=棱长×棱长×棱长么它的体积就缩小到原来的1。...............82.正方体体积的字母公式。如果用V表示正方体的体积,用a表示正方体的棱在有些实际问题中,也可以用3长,那么正方体体积的字母公式可以写成V=a....·a..·a=a....。.“横截面的面积×长”来计算体积。3.拓展提高。第4页 当正方体的棱长扩大到原来的n倍时,它的体积就31扩大到原来的n倍;当正方体的棱长缩小到原来的时,݊1它的体积就缩小到原来的3。݊十一、运用体积公式解决实际问题如果长方体和正方体体积公式中的已知条件都具备,那么可直接利用公式计算体积。运用通用公式进行计算时,一十二、长方体和正方体体积的通用公式定要注意单位的统一。如一个长方1.长方体和正方体底面积的意义。体的底面积是8平方厘米,高是3长方体和正方体无论怎样放置,总有一个面与平面分米,求体积。接触,通常把这个面叫作底面。长方体和正方体底面的面错解:8×3=24(立方厘米)...........正解:3分米=30厘积..,叫作它们的底面积。.........米,8×30=240(立方厘米)2.长方体和正方体底面积的计算方法。(1)长方体的底面积=长×宽。(2)正方体的底面积=棱长×棱长。3.长方体和正方体体积公式的推导。长方体的体积ൌ长×宽×高↓↓计算体积从外面测量长、宽、底面积高高;计算容积从里面测量长、宽、长方体(或正高。有的物体既有体积,也有容积,正方体的体积ൌ棱长×棱长×棱长如箱子、油桶、瓶子等。有的物体↓↓有体积,却没有容积,如石头、木头底面积可看作高这类实心的物体。既有体积又有容积的物体,它的体积一定大于它的方体)的体积=底面积×高容积。只有在容器厚度忽略不计的情况下,容积才可以看作与体积相长方体....(或正方体.....)的体积...=.底面积...×.高.。.如果用V表等。示体积,S表示底面积,h表示高,那么长方体(或正方体)巧记:的体积公式可以写成V=Sh。容积、体积孪兄弟,只是度量十三、容积的计算方法不统一。1.长方体或正方体物体容积的计算方法与体积的容积心中装物体,体积只想占计算方法相同,知道长、宽、高或棱长,即可根据体积公空间。式求出物体的容积。容积尺寸从里测,体积尺寸从2.体积和容积的区别与联系。外量。(1)不同点。记住二者不同处,计算才能少①意义不同。失误。Ⅰ.物体所占空间的大小叫作物体的体积。Ⅱ.容器所能容纳物体的体积叫作容器的容积。②测量方法不同。Ⅰ.求物体的体积是从物体的外部来测量长、宽、高或棱长。第5页 Ⅱ.求物体的容积是从容器的内部来测量长、宽、高或棱长。③单位名称不完全相同。Ⅰ.体积单位一般用立方米、立方分米、立方厘米。Ⅱ.容积一般用体积单位,但在计量液体(如药水、汽油等)的体积时,常用升或毫升作单位。(2)相同点。计算公式相同。长方体(或正方体)的体积(或容积)=底面积×高。二分数乘法一、分数与整数相乘的意义和计算方法巧记:1.整数乘法的意义。分数乘整数,计算很简单;求几个相同加数的和的简便运算。分子乘整数,分母不用变;2.(1)分数乘整数的意义与整数乘法的意义相同,都计算想简便,约分要在先;结果要想准,分数化最简。是求几个相同加数的和的简便运算。...............(2)分数与整数相乘的计算方法:用分数的分子和整........数相乘的积作分子.........,分母不变。能约分的要先约分..............,再计..算。在解决求一个数的几分之几..是多少的实际问题时,关键是要弄二、求一个数的几分之几是多少清哪个量是单位“1”。1.求一个数的几分之几是多少.............,用乘法计算。......2.求一个数的几倍与求一个数的几分之几实质上是相同的,它们都表示两个数的倍比关系。只是在用整数或小数表示这种倍比关系时,要说成一个数是另一个数的几倍,而在用分数表示时,要说成一个数是另一个数的几当相乘的两个分数的分子和分母能够约分时,可以先约分,再计3分之几。如一个数的1.5倍,也可以表示为一个数的。算。2因此,求一个数的几倍是多少与求一个数的几分之几是多少都可以用乘法计算。找准每步计算的单位“1”是解答连续求一个数的几分之几是多三、分数乘分数的意义和计算方法少的实际问题的关键。1.分数乘分数的意义就是求一个数的几分之几是多少。2.分数和分数相乘........,用分子相乘的积作分子...........,分母相...易错点:比较积与第一个因数第6页 乘的积作分母。能约分的要先约分,再计算。的大小只考虑按第二个因数的大....................小进行判断,这是不对的,一定要注3.整数可以看成分母是1的分数,所以分数与整数相意前提条件是“第一个因数”不能为乘,也可以看成是分数与分数相乘,即分数与分数相乘的0。计算方法适用于分数与整数相乘。四、连续求一个数的几分之几是多少的解题方法及分数连乘的计算方法1.连续求一个数的几分之几是多少的解题方法:先求出中间的间接量,再求出最后要求的量。2.分数连乘的计算方法:分子和分子相乘的积作分单独一个数不能称为倒数。因子,分母和分母相乘的积作分母。能约分的要先约分,再为互为倒数的两个数是相互依存计算。的。五、积与因数的大小关系积与因数的大小关系:a×b=c(a不为0),当b>1时,c>a;当b<1时,c
查看更多