辽宁省阜新市2020年中考数学试题 解析版

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

辽宁省阜新市2020年中考数学试题 解析版

‎2020年辽宁省阜新市中考数学试卷 一、选择题(在每一小题给出的四个选项中,只有一个是正确的,每小题3分,共30分)‎ ‎1.(3分)在实数﹣,﹣1,0,1中,最小的是(  )‎ A.﹣ B.﹣1 C.0 D.1‎ ‎2.(3分)下列立体图形中,左视图与主视图不同的是(  )‎ A.正方体 B.圆柱 ‎ C.圆锥 D.球 ‎3.(3分)如图,是小明绘制的他在一周内每天跑步圈数的折线统计图.下列结论正确的是(  )‎ A.众数是9 B.中位数是8.5 ‎ C.平均数是9 D.方差是7‎ ‎4.(3分)如图,AB为⊙O的直径,C,D是圆周上的两点,若∠ABC=38°,则锐角∠BDC的度数为(  )‎ A.57° B.52° C.38° D.26°‎ ‎5.(3分)掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是(  )‎ A.1 B. C. D.‎ ‎6.(3分)不等式组的解集,在数轴上表示正确的是(  )‎ A. B. ‎ C. D.‎ ‎7.(3分)若A(2,4)与B(﹣2,a)都是反比例函数y=(k≠0)图象上的点,则a的值是(  )‎ A.4 B.﹣4 C.2 D.﹣2‎ ‎8.(3分)在“建设美丽阜新”的行动中,需要铺设一段全长为3000m的污水排放管道.为了尽量减少施工时对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成这一任务.设实际每天铺xm管道,根据题意,所列方程正确的是(  )‎ A.﹣=30 ‎ B.﹣=30 ‎ C.﹣=30 ‎ D.﹣=30‎ ‎9.(3分)已知二次函数y=﹣x2+2x+4,则下列关于这个函数图象和性质的说法,正确的是(  )‎ A.图象的开口向上 ‎ B.图象的顶点坐标是(1,3) ‎ C.当x<1时,y随x的增大而增大 ‎ D.图象与x轴有唯一交点 ‎10.(3分)如图,在平面直角坐标系中,将边长为1的正六边形OABCDE绕点O顺时针旋转i个45°,得到正六边形OAiBi∁iDiEi,则正六边形OAiBi∁iDiEi(i=2020)的顶点∁i的坐标是(  )‎ A.(1,﹣) B.(1,) C.(1,﹣2) D.(2,1)‎ 二、填空题(每小题3分,共18分)‎ ‎11.(3分)计算:()﹣1+(π﹣)0=   .‎ ‎12.(3分)如图,直线a,b过等边三角形ABC顶点A和C,且a∥b,∠1=42°,则∠2的度数为   .‎ ‎13.(3分)如图,把△ABC沿AB边平移到△A1B1C1的位置,图中所示的三角形的面积S1与四边形的面积S2之比为4:5,若AB=4,则此三角形移动的距离AA1是   .‎ ‎14.(3分)如图,在△ABC中,∠ABC=90°,AB=BC=2.将△ABC绕点B逆时针旋转60°,得到△A1BC1,则AC边的中点D与其对应点D1的距离是   .‎ ‎15.(3分)如图,为了了解山坡上两棵树间的水平距离,数学活动小组的同学们测得该山坡的倾斜角α=20°,两树间的坡面距离AB=5m,则这两棵树的水平距离约为   m(结果精确到0.1m,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364).‎ ‎16.(3分)甲、乙两人沿笔直公路匀速由A地到B地,甲先出发30分钟,到达B 地后原路原速返回与乙在C地相遇.甲的速度比乙的速度快35km/h,甲、乙两人与A地的距离y(km)和乙行驶的时间x(h)之间的函数关系如图所示,则B,C两地的距离为   km(结果精确到1km).‎ 三、解答题(17、18、19、20题每题8分,21、22题每题10分,共52分)‎ ‎17.(8分)先化简,再求值:(1﹣)÷,其中x=﹣1.‎ ‎18.(8分)如图,△ABC在平面直角坐标系中,顶点的坐标分别为A (4,4),B (1,1),C (4,1).‎ ‎(1)画出与△ABC关于y轴对称的△A1B1C1;‎ ‎(2)将△ABC绕点O1顺时针旋转90°得到△A2B2C2,AA2弧是点A所经过的路径,则旋转中心O1的坐标为   ;‎ ‎(3)求图中阴影部分的面积(结果保留π).‎ ‎19.(8分)在“尚科学,爱运动”主题活动中,某校在七年级学生中随机抽取部分同学就“一分钟跳绳”进行测试,并将测试成绩x(单位:次)进行整理后分成六个等级,分别用A,B,C,D,E,F表示,并绘制成如图所示的两幅不完整的统计图表.请根据图表中所给出的信息解答下列问题:‎ 组别 成绩x(单位:次)‎ 人数 A ‎70≤x<90‎ ‎4‎ B ‎90≤x<110‎ ‎15‎ C ‎110≤x<130‎ ‎18‎ D ‎130≤x<150‎ ‎12‎ E ‎150≤x<170‎ m F ‎170≤x<190‎ ‎5‎ ‎(1)本次测试随机抽取的人数是   人,m=   ;‎ ‎(2)求C等级所在扇形的圆心角的度数;‎ ‎(3)若该校七年级学生共有300人,且规定不低于130次的成绩为优秀,请你估计该校七年级学生中有多少人能够达到优秀.‎ ‎20.(8分)在抗击新冠肺炎疫情期间,玉龙社区购买酒精和消毒液两种消毒物资,供居民使用.第一次购买酒精和消毒液若干,酒精每瓶10元,消毒液每瓶5元,共花费了350元;第二次又购买了与第一次相同数量的酒精和消毒液,由于酒精和消毒液每瓶价格分别下降了30%和20%,只花费了260元.‎ ‎(1)求每次购买的酒精和消毒液分别是多少瓶?‎ ‎(2)若按照第二次购买的价格再一次购买,根据需要,购买的酒精数量是消毒液数量的2倍,现有购买资金200元,则最多能购买消毒液多少瓶?‎ ‎21.(10分)如图,正方形ABCD和正方形CEFG(其中BD>2CE),BG的延长线与直线DE交于点H.‎ ‎(1)如图1,当点G在CD上时,求证:BG=DE,BG⊥DE;‎ ‎(2)将正方形CEFG绕点C旋转一周.‎ ‎①如图2,当点E在直线CD右侧时,求证:BH﹣DH=CH;‎ ‎②当∠DEC=45°时,若AB=3,CE=1,请直接写出线段DH的长.‎ ‎22.(10分)如图,二次函数y=x2+bx+c的图象交x轴于点A(﹣3,0),B(1,0),交y轴于点 C.点P(m,0)是x轴上的一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.‎ ‎(1)求这个二次函数的表达式;‎ ‎(2)①若点P仅在线段AO上运动,如图,求线段MN的最大值;‎ ‎②若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.‎ ‎2020年辽宁省阜新市中考数学试卷 参考答案与试题解析 一、选择题(在每一小题给出的四个选项中,只有一个是正确的,每小题3分,共30分)‎ ‎1.(3分)在实数﹣,﹣1,0,1中,最小的是(  )‎ A.﹣ B.﹣1 C.0 D.1‎ ‎【分析】根据实数的大小比较方法,找出最小的数即可.‎ ‎【解答】解:∵﹣<﹣1<0<1,‎ ‎∴最小的数是﹣,‎ 故选:A.‎ ‎2.(3分)下列立体图形中,左视图与主视图不同的是(  )‎ A.正方体 B.圆柱 ‎ C.圆锥 D.球 ‎【分析】从正面看所得到的图形是主视图,从左面看到的图形是左视图,进而分别判断得出答案.‎ ‎【解答】解:A.左视图与主视图都是正方形,故选项A不合题意;‎ B.左视图是圆,主视图都是矩形,故选项B符合题意;‎ C.左视图与主视图都是三角形;故选项C不合题意;‎ D.左视图与主视图都是圆,故选项D不合题意;‎ 故选:B.‎ ‎3.(3分)如图,是小明绘制的他在一周内每天跑步圈数的折线统计图.下列结论正确的是(  )‎ A.众数是9 B.中位数是8.5 ‎ C.平均数是9 D.方差是7‎ ‎【分析】由折线图得到一周内每天跑步圈数的数据,计算这组数据的平均数、中位数、众数、方差,然后判断得结论.‎ ‎【解答】解:A.数据10出现的次数最多,即众数是10,故本选项错误;‎ B.排序后的数据中,最中间的数据为9,即中位数为9,故本选项错误;‎ C.平均数为:(7+8+9+9+10+10+10)=9,故本选项正确;‎ D.方差为[(7﹣9)2+(8﹣9)2+(9﹣9)2+(9﹣9)2+(10﹣9)2+(10﹣9)2+(10﹣9)2]=,故本选项错误;‎ 故选:C.‎ ‎4.(3分)如图,AB为⊙O的直径,C,D是圆周上的两点,若∠ABC=38°,则锐角∠BDC的度数为(  )‎ A.57° B.52° C.38° D.26°‎ ‎【分析】由AB是⊙O的直径,根据直径所对的圆周角是直角,即可得∠ACB=90°,又由∠ABC=38°,即可求得∠A的度数,然后根据在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠BDC的度数.‎ ‎【解答】解:连接AC,‎ ‎∵AB是⊙O的直径,‎ ‎∴∠ACB=90°,‎ ‎∵∠ABC=38°,‎ ‎∴∠BAC=90°﹣∠ABC=52°,‎ ‎∴∠BDC=∠BAC=52°.‎ 故选:B.‎ ‎5.(3分)掷一枚质地均匀的硬币5次,其中3次正面朝上,2次正面朝下,则再次掷出这枚硬币,正面朝下的概率是(  )‎ A.1 B. C. D.‎ ‎【分析】直接利用概率的意义分析得出答案.‎ ‎【解答】解:∵掷质地均匀硬币的试验,每次正面向上和向下的概率相同,‎ ‎∴再次掷出这枚硬币,正面朝下的概率是.‎ 故选:D.‎ ‎6.(3分)不等式组的解集,在数轴上表示正确的是(  )‎ A. B. ‎ C. D.‎ ‎【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.‎ ‎【解答】解:解不等式1﹣x≥0,得:x≤1,‎ 解不等式2x﹣1>﹣5,得:x>﹣2,‎ 则不等式组的解集为﹣2<x≤1,‎ 故选:D.‎ ‎7.(3分)若A(2,4)与B(﹣2,a)都是反比例函数y=(k≠0)图象上的点,则a的值是(  )‎ A.4 B.﹣4 C.2 D.﹣2‎ ‎【分析】反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k,据此可得a的值.‎ ‎【解答】解:∵A(2,4)与B(﹣2,a)都是反比例函数y=(k≠0)图象上的点,‎ ‎∴k=2×4=﹣2a,‎ ‎∴a=﹣4,‎ 故选:B.‎ ‎8.(3分)在“建设美丽阜新”的行动中,需要铺设一段全长为3000m的污水排放管道.为了尽量减少施工时对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成这一任务.设实际每天铺xm管道,根据题意,所列方程正确的是(  )‎ A.﹣=30 ‎ B.﹣=30 ‎ C.﹣=30 ‎ D.﹣=30‎ ‎【分析】根据题意可以列出相应的分式方程,从而可以解答本题.‎ ‎【解答】解:设实际每天铺xm管道,‎ 根据题意,得﹣=30,‎ 故选:C.‎ ‎9.(3分)已知二次函数y=﹣x2+2x+4,则下列关于这个函数图象和性质的说法,正确的是(  )‎ A.图象的开口向上 ‎ B.图象的顶点坐标是(1,3) ‎ C.当x<1时,y随x的增大而增大 ‎ D.图象与x轴有唯一交点 ‎【分析】先利用配方法得到y=﹣(x﹣1)2+5,可根据二次函数的性质可对A、B、C进行判断;通过解方程﹣x2+2x+4=0可对D进行判断.‎ ‎【解答】解:∵y=﹣x2+2x+4=﹣(x﹣1)2+5,‎ ‎∴抛物线的开口向下,顶点坐标为(1,5),抛物线的对称轴为直线x=1,当x<1时,y随x的增大而增大,‎ 解方程﹣x2+2x+4=0,解得x1=1+,x2=1﹣,‎ ‎∴抛物线与x轴有两个交点.‎ 故选:C.‎ ‎10.(3分)如图,在平面直角坐标系中,将边长为1的正六边形OABCDE绕点O顺时针旋转i个45°,得到正六边形OAiBi∁iDiEi,则正六边形OAiBi∁iDiEi(i=2020)的顶点∁i的坐标是(  )‎ A.(1,﹣) B.(1,) C.(1,﹣2) D.(2,1)‎ ‎【分析】由题意旋转8次应该循环,因为2020÷8=252…4,所以∁i的坐标与C4的坐标相同.‎ ‎【解答】解:由题意旋转8次应该循环,‎ ‎∵2020÷8=252…4,‎ ‎∴∁i的坐标与C4的坐标相同,‎ ‎∵C(﹣1,),点C与C4关于原点对称,‎ ‎∴C4(1,﹣),‎ ‎∴顶点∁i的坐标是(1,﹣),‎ 故选:A.‎ 二、填空题(每小题3分,共18分)‎ ‎11.(3分)计算:()﹣1+(π﹣)0= 4 .‎ ‎【分析】首先计算乘方,然后计算加法,求出算式的值是多少即可.‎ ‎【解答】解:()﹣1+(π﹣)0‎ ‎=3+1‎ ‎=4.‎ 故答案为:4.‎ ‎12.(3分)如图,直线a,b过等边三角形ABC顶点A和C,且a∥b,∠1=42°,则∠2的度数为 102° .‎ ‎【分析】由等边三角形的性质得∠BAC=60°,由平角定义求出∠CAD=78°,再由平行线的性质得出∠2+∠CAD=180°,即可得出答案.‎ ‎【解答】解:如图,∵△ABC是等边三角形,‎ ‎∴∠BAC=60°,‎ ‎∵∠1=42°,‎ ‎∴∠CAD=180°﹣60°﹣42°=78°,‎ ‎∵a∥b,‎ ‎∴∠2+∠CAD=180°,‎ ‎∴∠2=180°﹣∠CAD=102°;‎ 故答案为:102°.‎ ‎13.(3分)如图,把△ABC沿AB边平移到△A1B1C1的位置,图中所示的三角形的面积S1与四边形的面积S2之比为4:5,若AB=4,则此三角形移动的距离AA1是  .‎ ‎【分析】根据题意可以推出△ABC∽△A1BD,结合它们的面积比,即可推出对应边的比,即可推出AA′的长度.‎ ‎【解答】解:∵把△ABC沿AB边平移到△A1B1C1的位置,‎ ‎∴AC∥A1C1,‎ ‎∴△ABC∽△A1BD,‎ ‎∵S△A1BD:S四边形ACDA1=4:5,‎ ‎∴S:S△ABC=4:9,‎ ‎∴A1B:AB=2:3,‎ ‎∵AB=4,‎ ‎∴A1B=,‎ ‎∴AA1=4﹣=.‎ 故答案为:.‎ ‎14.(3分)如图,在△ABC中,∠ABC=90°,AB=BC=2.将△ABC绕点B逆时针旋转60°,得到△A1BC1,则AC边的中点D与其对应点D1的距离是  .‎ ‎【分析】连接BD、BD1,如图,李煜等腰三角形斜边上的中线性质得到BD=AC=,再利用旋转的性质得BD1=BD,∠DBD1=60°,则可判断△BDD1为等边三角形,从而得到DD1=BD=.‎ ‎【解答】解:连接BD、BD1,如图,‎ ‎∵∠ABC=90°,AB=BC=2,‎ ‎∴AC==2,‎ ‎∵D点为AC的中点,‎ ‎∴BD=AC=,‎ ‎∵△ABC绕点B逆时针旋转60°,得到△A1BC1,‎ ‎∴BD1=BD,∠DBD1=60°,‎ ‎∴△BDD1为等边三角形,‎ ‎∴DD1=BD=.‎ 故答案为.‎ ‎15.(3分)如图,为了了解山坡上两棵树间的水平距离,数学活动小组的同学们测得该山坡的倾斜角α=20°,两树间的坡面距离AB=5m,则这两棵树的水平距离约为 4.7 m(结果精确到0.1m,参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364).‎ ‎【分析】根据余弦的定义求出AH,得到答案.‎ ‎【解答】解:过点A作水平面的平行线AH,作BH⊥AH于H,‎ 由题意得,∠BAH=α=20°,‎ 在Rt△BAH中,cos∠BAH=,‎ ‎∴AH=AB•cos∠BAH≈5×≈4.7(m),‎ 故答案为:4.7.‎ ‎16.(3分)甲、乙两人沿笔直公路匀速由A地到B地,甲先出发30分钟,到达B地后原路原速返回与乙在C地相遇.甲的速度比乙的速度快35km/h,甲、乙两人与A地的距离y(km)和乙行驶的时间x(h)之间的函数关系如图所示,则B,C两地的距离为 73 km(结果精确到1km).‎ ‎【分析】根据题意结合图象可得甲行驶的速度以及A、B两地之间的距离,进而得出乙行驶的速度,然后求出两人相遇的时间,即可求出B,C两地的距离.‎ ‎【解答】解:由题意可知,甲行驶的速度为:(km/h),A、B两地之间的距离为:25+50×2=125(km),‎ 乙的速度为:50﹣35=15(km/h),‎ ‎2+(125﹣15×2)÷(50+15)=,‎ 即乙出发小时后与甲相遇,‎ 所以B,C两地的距离为:(km).‎ 故答案为:73.‎ 三、解答题(17、18、19、20题每题8分,21、22题每题10分,共52分)‎ ‎17.(8分)先化简,再求值:(1﹣)÷,其中x=﹣1.‎ ‎【分析】先把括号内通分和除法运算化为乘法运算,再约分得到原式=,然后把x的值代入计算即可.‎ ‎【解答】解:原式=•‎ ‎=,‎ 当x=﹣1时,原式===1﹣.‎ ‎18.(8分)如图,△ABC在平面直角坐标系中,顶点的坐标分别为A (4,4),B (1,1),C (4,1).‎ ‎(1)画出与△ABC关于y轴对称的△A1B1C1;‎ ‎(2)将△ABC绕点O1顺时针旋转90°得到△A2B2C2,AA2弧是点A所经过的路径,则旋转中心O1的坐标为 (2,0) ;‎ ‎(3)求图中阴影部分的面积(结果保留π).‎ ‎【分析】(1)根据关于y轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;‎ ‎(2)作对应点A、A2,B、B2的连线的垂直平分线,交点即为旋转中心;‎ ‎(3)线段AB在旋转过程中扫过的图形为扇形,然后根据扇形面积公式计算即可.‎ ‎【解答】解:(1)如图,△A1B1C1为所作;‎ ‎(2)旋转中心O1的坐标为 (2,0),‎ 故答案为(2,0);‎ ‎(3)设旋转半径为r,则r2=22+42=20,‎ ‎∴阴影部分的图形面积为:=5π﹣.‎ ‎19.(8分)在“尚科学,爱运动”主题活动中,某校在七年级学生中随机抽取部分同学就“一分钟跳绳”进行测试,并将测试成绩x(单位:次)进行整理后分成六个等级,分别用A,B,C,D,E,F表示,并绘制成如图所示的两幅不完整的统计图表.请根据图表中所给出的信息解答下列问题:‎ 组别 成绩x(单位:次)‎ 人数 A ‎70≤x<90‎ ‎4‎ B ‎90≤x<110‎ ‎15‎ C ‎110≤x<130‎ ‎18‎ D ‎130≤x<150‎ ‎12‎ E ‎150≤x<170‎ m F ‎170≤x<190‎ ‎5‎ ‎(1)本次测试随机抽取的人数是 60 人,m= 6 ;‎ ‎(2)求C等级所在扇形的圆心角的度数;‎ ‎(3)若该校七年级学生共有300人,且规定不低于130次的成绩为优秀,请你估计该校七年级学生中有多少人能够达到优秀.‎ ‎【分析】(1)根据B等级的人数以及百分比,即可解决问题;‎ ‎(2)根据圆心角=360°×百分比计算即可,根据D等级人数画出直方图即可;‎ ‎(3)利用样本估计总体的思想解决问题即可.‎ ‎【解答】解:(1)15÷25%=60(人),‎ m=60﹣4﹣15﹣18﹣12﹣5=6(人);‎ 答:本次测试随机抽取的人数是60人;‎ ‎(2)C等级所在扇形的圆心角的度数=360°×=108°,‎ ‎(3)该校七年级学生能够达到优秀的人数为 ‎300×=115(人).‎ ‎20.(8分)在抗击新冠肺炎疫情期间,玉龙社区购买酒精和消毒液两种消毒物资,供居民使用.第一次购买酒精和消毒液若干,酒精每瓶10元,消毒液每瓶5元,共花费了350元;第二次又购买了与第一次相同数量的酒精和消毒液,由于酒精和消毒液每瓶价格分别下降了30%和20%,只花费了260元.‎ ‎(1)求每次购买的酒精和消毒液分别是多少瓶?‎ ‎(2)若按照第二次购买的价格再一次购买,根据需要,购买的酒精数量是消毒液数量的2倍,现有购买资金200元,则最多能购买消毒液多少瓶?‎ ‎【分析】(1)根据题意,可以列出相应的二元一次方程组,从而可以求得每次购买的酒精和消毒液分别是多少瓶;‎ ‎(2)设能购买消毒液m瓶,则能购买酒精2m瓶,根据“购买的酒精数量是消毒液数量的2倍,现有购买资金200元”列出不等式.‎ ‎【解答】(1)解:设购买酒精x瓶,消毒液y瓶,‎ 根据题意列方程组,得 ‎.‎ 解得,.‎ 答:每次购买的酒精和消毒液分别是20瓶,30瓶;‎ ‎(2)解:设能购买消毒液m瓶,则能购买酒精2m瓶,‎ 根据题意,得 10×(1﹣30%)•2m+5(1﹣20%)•m≤200,‎ 解得:m≤=11.‎ ‎∵m为正整数,‎ ‎∴m=11.‎ 所以,最多能购买消毒液11瓶.‎ ‎21.(10分)如图,正方形ABCD和正方形CEFG(其中BD>2CE),BG的延长线与直线DE交于点H.‎ ‎(1)如图1,当点G在CD上时,求证:BG=DE,BG⊥DE;‎ ‎(2)将正方形CEFG绕点C旋转一周.‎ ‎①如图2,当点E在直线CD右侧时,求证:BH﹣DH=CH;‎ ‎②当∠DEC=45°时,若AB=3,CE=1,请直接写出线段DH的长.‎ ‎【分析】(1)证明△BCG≌△DCE(SAS)可得结论.‎ ‎(2)①如图2中,在线段BG上截取BK=DH,连接CK.证明△BCK≌△DCH(SAS),推出CK=CH,∠BCK=∠DCH,推出△KCH 是等腰直角三角形,即可解决问题.‎ ‎②分两种情形:如图3﹣1中,当D,H,E三点共线时∠DEC=45°,连接BD.如图3﹣2中,当D,H,E三点共线时∠DEC=45°,连接BD,分别求解即可解决问题.‎ ‎【解答】(1)证明:如图1中,‎ 证明:∵在正方形ABCD和正方形CEFG中,BC=CD,CG=CE,∠BCG=∠DCE=90°,‎ ‎∴△BCG≌△DCE(SAS),‎ ‎∴BG=DE,∠CBG=∠CDE,‎ ‎∵∠CDE+∠DEC=90°,‎ ‎∴∠HBE+∠BEH=90°,‎ ‎∴∠BHE=90°,‎ ‎∴BG⊥DE.‎ ‎(2)①如图2中,在线段BG上截取BK=DH,连接CK.‎ 由(1)可知,∠CBK=∠CDH,‎ ‎∵BK=DH,BC=DC,‎ ‎∴△BCK≌△DCH(SAS),‎ ‎∴CK=CH,∠BCK=∠DCH,‎ ‎∴∠KCH=∠BCD=90°,‎ ‎∴△KCH是等腰直角三角形,‎ ‎∴HK=CH,‎ ‎∴BH﹣DH=BH﹣BK=KH=CH.‎ ‎②如图3﹣1中,当D,H,E三点共线时∠DEC=45°,连接BD.‎ 由(1)可知,BH=DE,且CE=CH=1,EHCH,‎ ‎∵BC=3,‎ ‎∴BD=BC=3,‎ 设DH=x,则BH=DE=x+,‎ 在Rt△BDH中,∵BH2+DH2=BD2,‎ ‎∴(x+)2+x2=(3)2,‎ 解得x=或(舍弃).‎ 如图3﹣2中,当D,H,E三点共线时∠DEC=45°,连接BD.‎ 设DH=x,‎ ‎∵BG=DH,‎ ‎∴BH=DH﹣HG=x﹣,‎ 在Rt△BDH中,∵BH2+DH2=BD2,‎ ‎∴(x﹣)2+x2=(3)2,‎ 解得x=或(舍弃),‎ 综上所述,满足条件的DH的值为或.‎ ‎22.(10分)如图,二次函数y=x2+bx+c的图象交x轴于点A(﹣3,0),B(1,0),交y轴于点 C.点P(m,0)是x轴上的一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.‎ ‎(1)求这个二次函数的表达式;‎ ‎(2)①若点P仅在线段AO上运动,如图,求线段MN的最大值;‎ ‎②若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.‎ ‎【分析】(1)把A(﹣3,0),B(1,0)代入y=x2+bx+c中,构建方程组解决问题即可.‎ ‎(2)①构建二次函数,利用二次函数的性质解决问题即可.‎ ‎②分三种情形:如图2﹣1中,当点M在线段AC上,MN=MC,四边形MNQC是菱形时.如图2﹣2中,当NC是菱形的对角线时,四边形MNCQ是正方形,如图2﹣3中,当点M在CA延长线上时,MN=CM,四边形MNQC是菱形时,分别求解即可.‎ ‎【解答】解:(1)把A(﹣3,0),B(1,0)代入y=x2+bx+c中,得,‎ 解得,‎ ‎∴y=x2+2x﹣3.‎ ‎(2)①设直线AC的表达式为y=kx+b,把A(﹣3,0),C(0,﹣3)代入y=kx+b.得 ‎,‎ 解得,‎ ‎∴y=﹣x﹣3,‎ ‎∵点P(m,0)是x轴上的一动点,且PM⊥x轴.‎ ‎∴M(m,﹣m﹣3),N(m,m2+2m﹣3),‎ ‎∴MN=(﹣m﹣3)﹣(m2+2m﹣3)=﹣m2﹣3m=﹣(m+)2+,‎ ‎∵a=﹣1<0,‎ ‎∴此函数有最大值.又∵点P在线段OA上运动,且﹣3<﹣<0,‎ ‎∴当m=﹣时,MN有最大值.‎ ‎②如图2﹣1中,当点M在线段AC上,MN=MC,四边形MNQC是菱形时.‎ ‎∵MN=﹣m2﹣3m,MC=﹣m,‎ ‎∴﹣m2﹣3m=﹣m,‎ 解得m=﹣3+或0(舍弃)‎ ‎∴MN=3﹣2,‎ ‎∴CQ=MN=3﹣2,‎ ‎∴OQ=3+1,‎ ‎∴Q(0,﹣3﹣1).‎ 如图2﹣2中,当NC是菱形的对角线时,四边形MNCQ是正方形,此时CN=MN=CQ=2,可得Q(0,﹣1).‎ 如图2﹣3中,当点M在CA延长线上时,MN=CM,四边形MNQC是菱形时,‎ 则有;m2+3m=﹣m,‎ 解得m=﹣3﹣或0(舍弃),‎ ‎∴MN=CQ=3+2,‎ ‎∴OQ=CQ﹣OC=3﹣1,‎ ‎∴Q(0,3﹣1).‎ 综上所述,满足条件的点Q的坐标为(0,﹣3﹣1)或(0,﹣1)或(0,3﹣1).‎
查看更多

相关文章

您可能关注的文档