- 2021-11-10 发布 |
- 37.5 KB |
- 31页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2019年甘肃省天水市中考数学试卷含答案
2019年甘肃省天水市中考数学试卷 一、选择题(本大题共10小题,每小题4分,共40分,每小题给出的四个选项中,只有一个选项是正确的,请把正确的选项选出来) 1.(4分)已知|a|=1,b是2的相反数,则a+b的值为( ) A.﹣3 B.﹣1 C.﹣1或﹣3 D.1或﹣3 2.(4分)自然界中的数学不胜枚举,如蜜蜂建造的蜂房既坚固又省料,其厚度为0.000073米,将0.000073用科学记数法表示为( ) A.73×10﹣6 B.0.73×10﹣4 C.7.3×10﹣4 D.7.3×10﹣5 3.(4分)如图所示,圆锥的主视图是( ) A. B. C. D. 4.(4分)一把直尺和一块三角板ABC(含30°、60°角)如图所示摆放,直尺一边与三角板的两直角边分别交于点D和点E,另一边与三角板的两直角边分别交于点F和点A,且∠CED=50°,那么∠BFA的大小为( ) A.145° B.140° C.135° D.130° 5.(4分)下列运算正确的是( ) A.(ab)2=a2b2 B.a2+a2=a4 C.(a2)3=a5 D.a2•a3=a6 6.(4分)已知a+b=12,则代数式2a+2b﹣3的值是( ) A.2 B.﹣2 C.﹣4 D.﹣312 7.(4分)如图,正方形ABCD内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在黑色区域内的概率为( ) A.14 B.12 C.π8 D.π4 8.(4分)如图,等边△OAB的边长为2,则点B的坐标为( ) A.(1,1) B.(1,3) C.(3,1) D.(3,3) 9.(4分)如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=80°,则∠EAC的度数为( ) A.20° B.25° C.30° D.35° 10.(4分)已知点P为某个封闭图形边界上一定点,动点M从点P出发,沿其边界顺时针匀速运动一周,设点M的运动时间为x,线段PM的长度为y,表示y与x的函数图象大致如图所示,则该封闭图形可能是( ) A. B. C. D. 二、填空题(本大题共8小题,每小题4分,共32分。只要求填写最后结果) 11.(4分)函数y=x-2中,自变量x的取值范围是 . 12.(4分)分式方程1x-1-2x=0的解是 . 13.(4分)一组数据2.2,3.3,4.4,11.1,a.其中整数a是这组数据中的中位数,则这组数据的平均数是 . 14.(4分)中国“一带一路”给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入20000元,到2018年人均年收入达到39200元.则该地区居民年人均收入平均增长率为 .(用百分数表示) 15.(4分)二次函数y=ax2+bx+c的图象如图所示,若M=4a+2b,N=a﹣b.则M、N的大小关系为M N.(填“>”、“=”或“<”) 16.(4分)如图,在平面直角坐标系中,已知⊙D经过原点O,与x轴、y轴分别交于A、B 两点,B点坐标为(0,23),OC与⊙D交于点C,∠OCA=30°,则圆中阴影部分的面积为 .(结果保留根号和π) 17.(4分)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么sin∠EFC的值为 . 18.(4分)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有 个〇. 三、解答题(本大题共3小题,共28分,解答时写出必要的文字说明及演算过程) 19.(10分)(1)计算:(﹣2)3+16-2sin30°+(2019﹣π)0+|3-4| (2)先化简,再求值:(xx2+x-1)÷x2-1x2+2x+1,其中x的值从不等式组-x≤12x-1<5的整数解中选取. 20.(8分)天水市某中学为了解学校艺术社团活动的开展情况,在全校范围内随机抽取了部分学生,在“舞蹈、乐器、声乐、戏曲、其它活动”项目中,围绕你最喜欢哪一项活动(每人只限一项)进行了问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题: (1)在这次调查中,一共抽查了 名学生. (2)请你补全条形统计图. (3)扇形统计图中喜欢“乐器”部分扇形的圆心角为 度. (4)请根据样本数据,估计该校1200名学生中喜欢“舞蹈”项目的共多少名学生? 21.(10分)如图,一次函数y=kx+b与反比例函数y=4x的图象交于A(m,4)、B(2,n)两点,与坐标轴分别交于M、N两点. (1)求一次函数的解析式; (2)根据图象直接写出kx+b-4x>0中x的取值范围; (3)求△AOB的面积. 四、解答题(本大题共50分解答时写出必要的演算步骤及推理过程) 22.(7分)某地的一座人行天桥如图所示,天桥高为6米,坡面BC 的坡度为1:1,文化墙PM在天桥底部正前方8米处(PB的长),为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:3.(参考数据:2≈1.414,3≈1.732) (1)若新坡面坡角为α,求坡角α度数; (2)有关部门规定,文化墙距天桥底部小于3米时应拆除,天桥改造后,该文化墙PM是否需要拆除?请说明理由. 23.(10分)天水某景区商店销售一种纪念品,这种商品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,市场调查发现,该商品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示. (1)求y与x之间的函数关系式,并写出自变量x的取值范围; (2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少? 24.(10分)如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D.过点A作⊙O的切线与 OD的延长线交于点P,PC、AB的延长线交于点F. (1)求证:PC是⊙O的切线; (2)若∠ABC=60°,AB=10,求线段CF的长. 25.(10分)如图1,对角线互相垂直的四边形叫做垂美四边形. (1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由; (2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2; (3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结CE、BG、GE.已知AC=4,AB=5,求GE的长. 26.(13分)如图,已知抛物线y=ax2+bx+c经过点A(﹣3,0)、B(9,0)和C(0,4),CD垂直于y轴,交抛物线于点D,DE垂直于x轴,垂足为E,直线l是该抛物线的对称轴,点F是抛物线的顶点. (1)求出该二次函数的表达式及点D的坐标; (2)若Rt△AOC沿x轴向右平移,使其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C与点F重合,得到Rt△A1O1F,求此时Rt△A1O1F与矩形OCDE重叠部分图形的面积; (3)若Rt△AOC沿x轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2C2,Rt△A2O2C2 与Rt△OED重叠部分图形的面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围. 2019年甘肃省天水市中考数学试卷 参考答案与试题解析 一、选择题(本大题共10小题,每小题4分,共40分,每小题给出的四个选项中,只有一个选项是正确的,请把正确的选项选出来) 1.(4分)已知|a|=1,b是2的相反数,则a+b的值为( ) A.﹣3 B.﹣1 C.﹣1或﹣3 D.1或﹣3 【解答】解:∵|a|=1,b是2的相反数, ∴a=1或a=﹣1,b=﹣2, 当a=1时,a+b=1﹣2=﹣1; 当a=﹣1时,a+b=﹣1﹣2=﹣3; 综上,a+b的值为﹣1或﹣3, 故选:C. 2.(4分)自然界中的数学不胜枚举,如蜜蜂建造的蜂房既坚固又省料,其厚度为0.000073米,将0.000073用科学记数法表示为( ) A.73×10﹣6 B.0.73×10﹣4 C.7.3×10﹣4 D.7.3×10﹣5 【解答】解:0.000073用科学记数法表示为7.3×10﹣5, 故选:D. 3.(4分)如图所示,圆锥的主视图是( ) A. B. C. D. 【解答】解:圆锥的主视图是等腰三角形,如图所示: 故选:A. 4.(4分)一把直尺和一块三角板ABC(含30°、60°角)如图所示摆放,直尺一边与三角板的两直角边分别交于点D和点E,另一边与三角板的两直角边分别交于点F和点A,且∠CED=50°,那么∠BFA的大小为( ) A.145° B.140° C.135° D.130° 【解答】解:∠FDE=∠C+∠CED=90°+50°=140°, ∵DE∥AF, ∴∠BFA=∠FDE=140°. 故选:B. 5.(4分)下列运算正确的是( ) A.(ab)2=a2b2 B.a2+a2=a4 C.(a2)3=a5 D.a2•a3=a6 【解答】解: A选项,积的乘方:(ab)2=a2b2,正确 B选项,合并同类项:a2+a2=2a2,错误 C选项,幂的乘方:(a2)3=a6,错误 D选项,同底数幂相乘:a2•a3=a5,错误 故选:A. 6.(4分)已知a+b=12,则代数式2a+2b﹣3的值是( ) A.2 B.﹣2 C.﹣4 D.﹣312 【解答】解: ∵2a+2b﹣3=2(a+b)﹣3, ∴将a+b=12代入得:2×12-3=﹣2 故选:B. 7.(4分)如图,正方形ABCD内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在黑色区域内的概率为( ) A.14 B.12 C.π8 D.π4 【解答】解:设正方形ABCD的边长为2a, 针尖落在黑色区域内的概率=12×π×a24a2=π8. 故选:C. 8.(4分)如图,等边△OAB的边长为2,则点B的坐标为( ) A.(1,1) B.(1,3) C.(3,1) D.(3,3) 【解答】解:过点B作BH⊥AO于H点,∵△OAB是等边三角形, ∴OH=1,BH=3. ∴点B的坐标为(1,3). 故选:B. 9.(4分)如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=80°,则∠EAC的度数为( ) A.20° B.25° C.30° D.35° 【解答】解:∵四边形ABCD是菱形,∠D=80°, ∴∠ACB=12∠DCB=12(180°﹣∠D)=50°, ∵四边形AECD是圆内接四边形, ∴∠AEB=∠D=80°, ∴∠EAC=∠AEB﹣∠ACE=30°, 故选:C. 10.(4分)已知点P为某个封闭图形边界上一定点,动点M从点P出发,沿其边界顺时针匀速运动一周,设点M的运动时间为x,线段PM的长度为y,表示y与x的函数图象大致如图所示,则该封闭图形可能是( ) A. B. C. D. 【解答】解:y与x的函数图象分三个部分,而B选项和C选项中的封闭图形都有4条线段,其图象要分四个部分,所以B、C选项不正确; A选项中的封闭图形为圆,开始y随x的增大而增大,然后y随x的减小而减小,所以A选项不正确; D选项为三角形,M点在三边上运动对应三段图象,且M点在P点的对边上运动时,PM的长有最小值. 故选:D. 二、填空题(本大题共8小题,每小题4分,共32分。只要求填写最后结果) 11.(4分)函数y=x-2中,自变量x的取值范围是 x≥2 . 【解答】解:依题意,得x﹣2≥0, 解得:x≥2, 故答案为:x≥2. 12.(4分)分式方程1x-1-2x=0的解是 x=2 . 【解答】解: 原式通分得:x-2(x-1)x(x-1)=0 去分母得:x﹣2(x﹣1)=0 去括号解得,x=2 经检验,x=2为原分式方程的解 故答案为x=2 13.(4分)一组数据2.2,3.3,4.4,11.1,a.其中整数a是这组数据中的中位数,则这组数据的平均数是 5 . 【解答】解:∵整数a是这组数据中的中位数, ∴a=4, ∴这组数据的平均数=15(2.2+3.3+4.4+4+11.1)=5. 故答案为5. 14.(4分)中国“一带一路”给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入20000元,到2018年人均年收入达到39200元.则该地区居民年人均收入平均增长率为 40% .(用百分数表示) 【解答】解:设该地区居民年人均收入平均增长率为x, 20000(1+x)2=39200, 解得,x1=0.4,x2=﹣2.4(舍去), ∴该地区居民年人均收入平均增长率为40%, 故答案为:40%. 15.(4分)二次函数y=ax2+bx+c的图象如图所示,若M=4a+2b,N=a﹣b.则M、N 的大小关系为M < N.(填“>”、“=”或“<”) 【解答】解:当x=﹣1时,y=a﹣b+c>0, 当x=2时,y=4a+2b+c<0, M﹣N=4a+2b﹣(a﹣b) =4a+2b+c﹣(a﹣b+c)<0, 即M<N, 故答案为:< 16.(4分)如图,在平面直角坐标系中,已知⊙D经过原点O,与x轴、y轴分别交于A、B两点,B点坐标为(0,23),OC与⊙D交于点C,∠OCA=30°,则圆中阴影部分的面积为 2π﹣23 .(结果保留根号和π) 【解答】解:连接AB, ∵∠AOB=90°, ∴AB是直径, 根据同弧对的圆周角相等得∠OBA=∠C=30°, ∵OB=23, ∴OA=OBtan∠ABO=OBtan30°=23×33=2,AB=AO÷sin30°=4,即圆的半径为2, ∴S阴影=S半圆﹣S△ABO=π×222-12×2×23=2π﹣23. 故答案为:2π﹣23. 17.(4分)如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么sin∠EFC的值为 45 . 【解答】解:∵四边形ABCD为矩形, ∴AD=BC=5,AB=CD=3, ∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处, ∴AF=AD=5,EF=DE, 在Rt△ABF中,∵BF=AF2-AB2=4, ∴CF=BC﹣BF=5﹣4=1, 设CE=x,则DE=EF=3﹣x 在Rt△ECF中,∵CE2+FC2=EF2, ∴x2+12=(3﹣x)2,解得x=43, ∴EF=3﹣x=53, ∴sin∠EFC=CEEF=45. 故答案为:45. 18.(4分)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形中共有 6058 个〇. 【解答】解:由图可得, 第1个图象中〇的个数为:1+3×1=4, 第2个图象中〇的个数为:1+3×2=7, 第3个图象中〇的个数为:1+3×3=10, 第4个图象中〇的个数为:1+3×4=13, …… ∴第2019个图形中共有:1+3×2019=1+6057=6058个〇, 故答案为:6058. 三、解答题(本大题共3小题,共28分,解答时写出必要的文字说明及演算过程) 19.(10分)(1)计算:(﹣2)3+16-2sin30°+(2019﹣π)0+|3-4| (2)先化简,再求值:(xx2+x-1)÷x2-1x2+2x+1,其中x的值从不等式组-x≤12x-1<5的整数解中选取. 【解答】解:(1)原式=﹣8+4﹣2×12+1+4-3 =﹣8+4﹣1+1+4-3 =-3; (2)原式=x-x2-xx(x+1)•x+1x-1 =-xx+1•x+1x-1 =x1-x, 解不等式组-x≤12x-1<5得﹣1≤x<3, 则不等式组的整数解为﹣1、0、1、2, ∵x≠±1,x≠0, ∴x=2, 则原式=21-2=-2. 20.(8分)天水市某中学为了解学校艺术社团活动的开展情况,在全校范围内随机抽取了部分学生,在“舞蹈、乐器、声乐、戏曲、其它活动”项目中,围绕你最喜欢哪一项活动(每人只限一项)进行了问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题: (1)在这次调查中,一共抽查了 50 名学生. (2)请你补全条形统计图. (3)扇形统计图中喜欢“乐器”部分扇形的圆心角为 115.2 度. (4)请根据样本数据,估计该校1200名学生中喜欢“舞蹈”项目的共多少名学生? 【解答】解:(1)8÷16%=50, 所以在这次调查中,一共抽查了50名学生; (2)喜欢戏曲的人数为50﹣8﹣10﹣12﹣16=4(人), 条形统计图为: (3)扇形统计图中喜欢“乐器”部分扇形的圆心角的度数为360°×1650=115.2°; 故答案为50;115.2; (4)1200×1250=288, 所以估计该校1200名学生中喜欢“舞蹈”项目的共288名学生. 21.(10分)如图,一次函数y=kx+b与反比例函数y=4x的图象交于A(m,4)、B(2,n)两点,与坐标轴分别交于M、N两点. (1)求一次函数的解析式; (2)根据图象直接写出kx+b-4x>0中x的取值范围; (3)求△AOB的面积. 【解答】解:(1)∵点A 在反比例函数y=4x上, ∴4m=4,解得m=1, ∴点A的坐标为(1,4), 又∵点B也在反比例函数y=4x上, ∴42=n,解得n=2, ∴点B的坐标为(2,2), 又∵点A、B在y=kx+b的图象上, ∴k+b=42k+b=2,解得k=-2b=6, ∴一次函数的解析式为y=﹣2x+6. (2)根据图象得:kx+b-4x>0时,x的取值范围为x<0或1<x<2; (3)∵直线y=﹣2x+6与x轴的交点为N, ∴点N的坐标为(3,0), S△AOB=S△AON﹣S△BON=12×3×4-12×3×2=3. 四、解答题(本大题共50分解答时写出必要的演算步骤及推理过程) 22.(7分)某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,文化墙PM在天桥底部正前方8米处(PB的长),为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:3.(参考数据:2≈1.414,3≈1.732) (1)若新坡面坡角为α,求坡角α度数; (2)有关部门规定,文化墙距天桥底部小于3米时应拆除,天桥改造后,该文化墙PM是否需要拆除?请说明理由. 【解答】解:(1)∵新坡面坡角为α,新坡面的坡度为1:3, ∴tanα=13=33, ∴α=30°; (2)该文化墙PM不需要拆除, 理由:作CD⊥AB于点D,则CD=6米, ∵新坡面的坡度为1:3, ∴tan∠CAD=CDAD=6AD=13, 解得,AD=63米, ∵坡面BC的坡度为1:1,CD=6米, ∴BD=6米, ∴AB=AD﹣BD=(63-6)米, 又∵PB=8米, ∴PA=PB﹣AB=8﹣(63-6)=14﹣63≈14﹣6×1.732≈3.6米>3米, ∴该文化墙PM不需要拆除. 23.(10分)天水某景区商店销售一种纪念品,这种商品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,市场调查发现,该商品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示. (1)求y与x之间的函数关系式,并写出自变量x的取值范围; (2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少? 【解答】解:(1)设y与x的函数解析式为y=kx+b, 将(10,30)、(16,24)代入,得:10k+b=3016k+b=24, 解得:k=-1b=40, 所以y与x的函数解析式为y=﹣x+40(10≤x≤16); (2)根据题意知,W=(x﹣10)y =(x﹣10)(﹣x+40) =﹣x2+50x﹣400 =﹣(x﹣25)2+225, ∵a=﹣1<0, ∴当x<25时,W随x的增大而增大, ∵10≤x≤16, ∴当x=16时,W取得最大值,最大值为144, 答:每件销售价为16元时,每天的销售利润最大,最大利润是144元. 24.(10分)如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D.过点A作⊙O的切线与 OD的延长线交于点P,PC、AB的延长线交于点F. (1)求证:PC是⊙O的切线; (2)若∠ABC=60°,AB=10,求线段CF的长. 【解答】解:(1)连接OC, ∵OD⊥AC,OD经过圆心O, ∴AD=CD, ∴PA=PC, 在△OAP和△OCP中, ∵OA=OCPA=PCOP=OP, ∴△OAP≌△OCP(SSS), ∴∠OCP=∠OAP ∵PA是⊙O的切线, ∴∠OAP=90°. ∴∠OCP=90°, 即OC⊥PC ∴PC是⊙O的切线. (2)∵OB=OC,∠OBC=60°, ∴△OBC是等边三角形, ∴∠COB=60°, ∵AB=10, ∴OC=5, 由(1)知∠OCF=90°, ∴CF=OCtan∠COB=53. 25.(10分)如图1,对角线互相垂直的四边形叫做垂美四边形. (1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由; (2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2; (3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结CE、BG、GE.已知AC=4,AB=5,求GE的长. 【解答】解:(1)四边形ABCD是垂美四边形. 证明:∵AB=AD, ∴点A在线段BD的垂直平分线上, ∵CB=CD, ∴点C在线段BD的垂直平分线上, ∴直线AC是线段BD的垂直平分线, ∴AC⊥BD,即四边形ABCD是垂美四边形; (2)猜想结论:垂美四边形的两组对边的平方和相等. 如图2,已知四边形ABCD中,AC⊥BD,垂足为E, 求证:AD2+BC2=AB2+CD2 证明:∵AC⊥BD, ∴∠AED=∠AEB=∠BEC=∠CED=90°, 由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2, AB2+CD2=AE2+BE2+CE2+DE2, ∴AD2+BC2=AB2+CD2; 故答案为:AD2+BC2=AB2+CD2. (3)连接CG、BE, ∵∠CAG=∠BAE=90°, ∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE, 在△GAB和△CAE中,AG=AC∠GAB=∠CAEAB=AE, ∴△GAB≌△CAE(SAS), ∴∠ABG=∠AEC,又∠AEC+∠AME=90°, ∴∠ABG+∠AME=90°,即CE⊥BG, ∴四边形CGEB是垂美四边形, 由(2)得,CG2+BE2=CB2+GE2, ∵AC=4,AB=5, ∴BC=3,CG=42,BE=52, ∴GE2=CG2+BE2﹣CB2=73, ∴GE=73. 26.(13分)如图,已知抛物线y=ax2+bx+c经过点A(﹣3,0)、B(9,0)和C(0,4),CD垂直于y轴,交抛物线于点D,DE垂直于x轴,垂足为E,直线l是该抛物线的对称轴,点F是抛物线的顶点. (1)求出该二次函数的表达式及点D的坐标; (2)若Rt△AOC沿x轴向右平移,使其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C与点F重合,得到Rt△A1O1F,求此时Rt△A1O1F与矩形OCDE重叠部分图形的面积; (3)若Rt△AOC沿x轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2C2,Rt△A2O2C2与Rt△OED重叠部分图形的面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围. 【解答】解:(1)∵抛抛线y=ax2+bx+c经过点A(﹣3,0)、B(9,0)和C(0,4), ∴抛物线的解析式为y=a(x+3)(x﹣9), ∵点C(0,4)在抛物线上, ∴4=﹣27a, ∴a=-427, ∴抛物线的解析式为:y=-427(x+3)(x﹣9)=-427x2+89x+4, ∵CD垂直于y轴,C(0,4), 令-427x2+89x+4=4, 解得,x=0或x=6, ∴点D的坐标为(6,4); (2)如图1所示,设A1F交CD于点G,O1F交CD于点H, ∵点F是抛物线y=-427x2+89x+4的顶点, ∴F(3,163), ∴FH=163-4=43, ∵GH∥A1O1, ∴△FGH∽△FA1O1, ∴GHA1O1=FHFO1, ∴GH3=434, 解得,GH=1, ∵Rt△A1O1F与矩形OCDE重叠部分的图形是梯形A1O1HG, ∴S重叠部分=S△A1O1F-S△FGH =12A1O1•O1F-12GH•FH =12×3×4-12×1×43 =163; (3)①当0<t≤3时,如图2所示,设O2C2交OD于点M, ∵C2O2∥DE, ∴△OO2M∽△OED, ∴O2MDE=OO2OE, ∴O2M4=t6, ∴O2M=23t, ∴S=S△OO2M=12OO2×O2M=12t×23t=13t2; ②当3<t≤6时,如图3所示,设A2C2交OD于点M,O2C2交OD于点N, 将点D(6,4)代入y=kx, 得,k=23, ∴yOD=23x, 将点(t﹣3,0),(t,4)代入y=kx+b, 得,k(t-3)+b=0kt+b=4, 解得,k=43,b=-43t+4, ∴直线A2C2的解析式为:y=43x-43t+4, 联立yOD=23x与y=43x-43t+4, 得,23x=43x-43t+4, 解得,x=﹣6+2t, ∴两直线交点M坐标为(﹣6+2t,﹣4+43t), 故点M到O2C2的距离为6﹣t, ∵C2N∥OC, ∴△DC2N∽△DCO, ∴DC2CD=C2NOC, ∴6-t6=C2N4, ∴C2N=23(6﹣t), ∴S=S四边形A2O2NM=S△A2O2C2-S△C2MN =12OA•OC-12C2N(6﹣t) =12×3×4-12×23(6﹣t)(6﹣t) =-13t2+4t﹣6; ∴S与t的函数关系式为:S=13t2(0<t≤3)-13t2+4t-6(3<t≤6). 声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布 日期:2019/6/30 10:00:10;用户:中考培优辅导;邮箱:p5193@xyh.com;学号:27411521查看更多