八年级数学上册第十三章轴对称13-4课题学习最短路径问题教案新版 人教版

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

八年级数学上册第十三章轴对称13-4课题学习最短路径问题教案新版 人教版

‎13.4 课题学习 最短路径问题 通过对最短路径问题的探索,进一步理解和掌握两点之间线段最短和垂线段最短.‎ 重点 应用所学知识解决最短路径问题.‎ 难点 选择合理的方法解决问题.‎ 一、创设情境 多媒体展示:如图,一个圆柱的底面周长为20 cm,高AB为4 cm,BC是底面的直径,一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路径.‎ 这是一个立体图形,要求蚂蚁爬行的最短路径,就是要把圆柱的侧面展开,利用“两点之间,线段最短”求出最短路径.那么怎样求平面图形中的最短路径问题呢?‎ 二、自主探究 探究一:最短路径问题的概念 ‎1.多媒体出示图①和图②,提出问题:‎ ‎(1)图①中从点A走到点B哪条路最短?(2)图②中点C与直线AB上所有的连线中哪条线最短?‎ ‎2.教师总结:“两点之间,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”等问题,我们称之为最短路径问题.‎ 探究二:河边饮马问题 多媒体出示问题1:牧马人从A地出发,到一条笔直的河边l饮马,然后到B地,牧马人从河边什么地方饮马,可使所走的路径最短?‎ 提出问题:如果点A和点B分别位于直线的两侧,如何在直线l上找到一点,使得这个点到点A和点B的距离的和最短?‎ 思考:如果点A和点B位于直线的同侧,如何在直线l上找到一点,使得这个点到点A和点B的距离的和最短?‎ 教师引导学生讨论,明确找点的方法.‎ 让学生对刚才的方法通过逻辑推理的方法加以证明.‎ 2‎ 教师巡视指导学生的做题情况,有针对性地进行点拨.‎ 探究三:造桥选址问题 多媒体出示问题2.(教材第86页)‎ 提出问题:‎ ‎(1)根据问题1的探讨你对这道题有什么思路和想法?‎ ‎(2)这个问题有什么不同?‎ ‎(3)要保证路径AMNB最短,应该怎样选址?‎ 学生对这个三个问题展开讨论,得出结论:要保证AMNB最短,就是要保证AM+MN+NB最小.‎ 尝试选址作出图形.‎ 多媒体展示教材图13.4-7,13.4-8,13.4-9,引导学生分析、观察,让学生根据刚才的分析,完成证明过程.‎ 根据问题1和问题2,你有什么启示?‎ 三、知识拓展 已知长方体的长为2 cm、宽为1 cm、高为4 cm,一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近,最短的路程是多少?‎ ‎[让学生讨论有几种爬行的方法,计算出每种方案中的路程,再进行比较]‎ 四、归纳总结 ‎1.本节课你学到了哪些知识?‎ ‎2.怎样解决最短路径问题?‎ 本节课以数学史中的一个经典问题——“将军饮马问题”为载体开展对“最短路径问题”的课题学习,让学生经历将实际问题抽象为数学问题的线段和最小问题,再利用轴对称将线段和最小的问题转化为“两点之间,线段最短”问题.‎ 2‎
查看更多

相关文章

您可能关注的文档