- 2022-03-31 发布 |
- 37.5 KB |
- 19页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
七年级下数学课件:6-1 平方根 (共19张PPT)_人教新课标
6.1平方根(第1课时) 学习目标(1)了解算术平方根的概念.(2)会求一些数的算术平方根,并用算术平方根符号表示. 请你说一说解决问题的思路.1.预习展示学校要举行美术作品比赛,小鸥想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少? (1)若正方形的面积如下,请填表:(2)你能指出这些问题的共同特点吗?正方形的面积/dm2191636正方形的边长/dm2都是已知一个正数的平方,求这个正数.1.预习展示 规定:0的算术平方根是0,也就是说 ,则 .一般地,如果一个正数的平方等于,即,那么这个正数叫做的算术平方根.的算术平方根记为,读作“根号”,叫做被开方数.2.归纳概念展示 3.归纳概念展示3、判断下列说法是否正确,并说明理由.(讲解要有根据)(1)49的算数平方根是7;(2)2是4的算数平方根;(3)-5是25的算数平方根;(4)64的算数平方根是(5)-16的算数平方根是-4 例1求下数的算术平方根:(1);4.例题展示(2)(3) 求下列各式的值:(1);(2);(3);(4).解:(1) ;(2) ;(3) ;(4) .5.练习展示 6.提出问题被开方数的大小与对应的算术平方根的大小之间有什么关系呢? 练习:求下列各数的算术平方根,并用“<”分别把被开方数和算术平方根连接起来.1,4,9,16,25比较结果:1<4<9<16<25,结论:被开方数越大,对应的算术平方根也越大. 例2下列各式是否有意义,为什么?(1)(2)(3)(4)解:(1)无意义;(4)有意义.(3)有意义;(2)有意义;7.例题展示思考:什么数才有算术平方根?非负数 能否用两个面积为1的小正方形剪拼成一个面积为2的大正方形?8.提出问题 8.提出问题能否用两个面积为1的小正方形剪拼成一个面积为2的大正方形? 8.问题展示如图:能用两个面积为1的小正方形拼成一个面积为2的大正方形。问题:拼成的这个面积为2dm2的大正方形的边长应该是多少呢? 拼成的这个面积为2dm2的大正方形的边长应该是多少呢?8.问题解题展示解:设大正方形的边长为xdm,则由算术平方根的定义,得.所以大正方形的边长为dm.有多大呢? 1、的算术平方根是_______;2、一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A.x+1B.C.+1D.9.拓展问题展示 9.拓展问题展示3、已知x,y是实数,且+=0,xy的值是()A.4B.-4C.9/4D.-9/44、解方程:-16=0; (1)什么是算术平方根?如何求一个正数的算术平方根?(2)什么数才有算术平方根?10.归纳小结 11.当堂检测1、求下列各数的算术平方根(1)100(2)0(3)(4)1(5)12、计算:(1)-=(2)=(3)=(4)=查看更多