- 2021-07-01 发布 |
- 37.5 KB |
- 4页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
等差数列的前n项和教案2
课题: §2. 3 等差数列的前n项和 授课类型:新授课 (第1课时) ●教学目标 知识与技能:掌握等差数列前n项和公式及其获取思路;会用等差数列的前n项和公式解决一些简单的与前n项和有关的问题 过程与方法:通过公式的推导和公式的运用,使学生体会从特殊到一般,再从一般到特殊的思维规律,初步形成认识问题,解决问题的一般思路和方法;通过公式推导的过程教学,对学生进行思维灵活性与广阔性的训练,发展学生的思维水平. 情感态度与价值观:通过公式的推导过程,展现数学中的对称美。 ●教学重点 等差数列n项和公式的理解、推导及应 ●教学难点 灵活应用等差数列前n项公式解决一些简单的有关问题 ●教学过程 Ⅰ.课题导入 “小故事”: 高斯是伟大的数学家,天文学家,高斯十岁时,有一次老师出了一道题目,老师说: “现在给大家出道题目: 1+2+…100=?” 过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10…算得不亦乐乎时,高斯站起来回答说: “1+2+3+…+100=5050。 教师问:“你是如何算出答案的? 高斯回答说:因为1+100=101; 2+99=101;…50+51=101,所以 101×50=5050” 这个故事告诉我们: (1)作为数学王子的高斯从小就善于观察,敢于思考,所以他能从一些简单的事物中发现和寻找出某些规律性的东西。 (2)该故事还告诉我们求等差数列前n项和的一种很重要的思想方法,这就是下面我们要介绍的“倒序相加”法。 Ⅱ.讲授新课 1.等差数列的前项和公式1: 证明: ① ② ①+②: ∵ 4 ∴ 由此得: 从而我们可以验证高斯十岁时计算上述问题的正确性 2. 等差数列的前项和公式2: 用上述公式要求必须具备三个条件: 但 代入公式1即得: 此公式要求必须已知三个条件: (有时比较有用) [范例讲解] 课本P49-50的例1、例2、例3 由例3得与之间的关系: 由的定义可知,当n=1时,=;当n≥2时,=-, 即=. Ⅲ.课堂练习 课本P52练习1、2、3、4 Ⅳ.课时小结 本节课学习了以下内容: 1.等差数列的前项和公式1: 2.等差数列的前项和公式2: Ⅴ.课后作业 课本P52-53习题[A组]2、3题 ●板书设计 ●授后记 课题: §2.3等差数列的前n项和 授课类型:新授课 (第2课时) ●教学目标 知识与技能:进一步熟练掌握等差数列的通项公式和前n 4 项和公式;了解等差数列的一些性质,并会用它们解决一些相关问题;会利用等差数列通项公式与前 项和的公式研究 的最值; 过程与方法:经历公式应用的过程; 情感态度与价值观:通过有关内容在实际生活中的应用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生要善于观察生活,从生活中发现问题,并数学地解决问题。 ●教学重点 熟练掌握等差数列的求和公式 ●教学难点 灵活应用求和公式解决问题 ●教学过程 Ⅰ.课题导入 首先回忆一下上一节课所学主要内容: 1.等差数列的前项和公式1: 2.等差数列的前项和公式2: Ⅱ.讲授新课 探究:——课本P51的探究活动 结论:一般地,如果一个数列的前n项和为,其中p、q、r为常数,且,那么这个数列一定是等差数列吗?如果是,它的首项与公差分别是多少? 由,得 当时== =2p 对等差数列的前项和公式2:可化成式子: ,当d≠0,是一个常数项为零的二次式 [范例讲解] 等差数列前项和的最值问题 课本P51的例4 解略 小结: 对等差数列前项和的最值问题有两种方法: (1) 利用: 当>0,d<0,前n项和有最大值可由≥0,且≤0,求得n的值 当<0,d>0,前n项和有最小值可由≤0,且≥0,求得n的值 4 (1) 利用: 由利用二次函数配方法求得最值时n的值 Ⅲ.课堂练习 1.一个等差数列前4项的和是24,前5项的和与前2项的和的差是27,求这个等差数列的通项公式。 2.差数列{}中, =-15, 公差d=3, 求数列{}的前n项和的最小值。 Ⅳ.课时小结 1.前n项和为,其中p、q、r为常数,且,一定是等差数列,该数列的 首项是 公差是d=2p 通项公式是 2.差数列前项和的最值问题有两种方法: (1)当>0,d<0,前n项和有最大值可由≥0,且≤0,求得n的值。 当<0,d>0,前n项和有最小值可由≤0,且≥0,求得n的值。 (2)由利用二次函数配方法求得最值时n的值 Ⅴ.课后作业 课本P53习题[A组]的5、6题 ●板书设计 ●授后记 4查看更多