- 2021-06-30 发布 |
- 37.5 KB |
- 9页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】贵州省遵义市绥阳县绥阳中学2019-2020学年高一期末考市试卷
www.ks5u.com 贵州省遵义市绥阳县绥阳中学2019-2020学年高一期末考试数学试卷 本试卷分第I卷(选择题)和第II卷(非选择题)两部分,共150分,考试用时120分钟。 第I卷(选择题 共60分) 一、选择题(本大题共12小题,每小题5分,共60分,在每小题四个选项中,只有一项符合要求) 1.若集合,则下列结论中正确的是( ) A. B. C. D. 2.已知,则( ) A. B. C. D. 3.已知,则( ) A. B. C. D. 4.若,则下列结论一定正确是( ) A. B. C. D. 5.若等差数列的前项之和为,则( ) A. B. C. D. 6.已知两非零向量满足,则( ) A. B. C. D. 7.针对柱、锥、台、球,给出下列命题,其中正确的是( ) ①如果一个几何体的三视图是完全相同的,则这个几何体是正方体; ②如果一个几何体的正视图和俯视图都是矩形,则这个几何体是长方体; ③如果一个几何体的三视图都是矩形,则这个几何体是长方体; ④如果一个几何体的正视图和侧视图都是等腰梯形,则这个几何体是圆台. A.①② B.③ C.③④ D.①③ 8.已知平面和外的一条直线,下列说法不正确的是( ) A.若垂直于内的两条平行线,则 B.若平行于内的一条直线,则 C.若垂直于内的两条相交直线,则 D.若平行于内的无数条直线,则 9.某几何体的三视图如图所示,该几何体的表面积为 ( ) A. B. C. D. 10.在直三棱柱中,底面是等腰直角三角形,,为侧棱上的动点,若的周长的最小值为,则三棱锥的外接球的体积为( ) A. B. C. D. 11.关于函数,下列说法中正确的个数是( ) ①是偶函数;②在上单调递增;③在上有两个零点;④的最小值为. A.1个 B.2个 C.3个 D.4个 12.已知函数有唯一的零点,则负实数的值为( ) A. B. C. D. 第II卷(非选择题 共90分) 二、填空题(本大题共4个小题,每小题5分,共20分,请将正确答案填写在答题卡相应位置) 13.在等比数列中,,则 . 14.在△中,,则 . 15.圆锥的轴截面是边长为2的正三角形,则该圆锥的表面积为 . 第16题 16.魏晋时期数学家刘徽在为《九章算术》作注时,提出利用“牟合方盖”解决球体体积,“牟合方盖”由完全相同的四个曲面构成,相对的两个曲面在同一圆柱的侧面上,正视图和侧视图都是圆,每一个水平截面都是正方形,好似两个扣合 (牟合)在一起的方形伞(方盖).二百多年后,南北朝时期数学家祖暅在前人研究的基础上提出了《祖暅原理》:“幂势既同,则积不容异”.意思是:两等高立方体,若在每一等高处的截面积都相等,则两立方体体积相等.如图有一牟合方盖,其正视图与侧视图都是半径为的圆,正边形是为体现其直观性所作的辅助线,根据祖暅原理,该牟合方盖体积为 . 三、解答题(本大题共6个小题,共70分,解答应写出必要的文字说明,证明过程或演算步骤) (本题满分10分) 17.已知函数. 求的最小正周期和最大值; 求在上的值域. 18.(本题满分12分) △的内角所对的边分别为,且. 求角; 若,求△面积的最大值. 19.(本题满分12分) 记数列的前n项和为,. 求数列的通项公式; 数列的前n项和. 20.(本题满分12分) 如图,在直三棱柱中,是的中点,. 证明:平面; 证明:. 21.(本题满分12分) 如图,是半圆O的直径,平面与半圆O所在的平面垂直, ,,,是半圆O上不同于的点,四边形是矩形. 若,证明:平面; 若,求三棱锥体积的最大值. 22.(本题满分12分) 已知函数的图象上有一点列,点在轴上的射影是且. 求数列的通项公式; 对任意的正整数,当时,不等式恒成立,求实数的取值范围; (III)设四边形的面积是,求证:. 【参考答案】 一、选择题 1 2 3 4 5 6 7 8 9 10 11 12 D C B B A D B A B C A C 二、填空题 13 14 15 16 三、解答题 17.(I)...........3分 ,的最大值为........................................................................................................7分 (II)当时,,.......................................................10分 18.(I)在△中,根据正弦定理知................................................2分 .......................................................6分 (II)根据余弦定理知, .................................................................................................9分 .............................................................................................12分 19.(I)①当时,;②当时,,..........5分 (II)由(I)知,, 两式相减得.....................................................12分 20(I)连接记,在△中,分别是的中点,....2分 平面,平面,,平面..........................5分 (II)和为异面直线,由(I)知与所成角即与所成角.............8分 在△中, 异面直线与所成角为,.....................12分 22.(I),又是以4为首项4为公比的等比数列 .......................................................................................................................3分 (II),不等式对正整数恒成立, 而,是一个减数列,(或用作差等方法判断单调性).....5分 对恒成立,解得或........................7分 (III) .....................10分 .......12分查看更多