江西省赣州市石城中学2020届高三上学期第九次周考数学(文)(B)试卷 含答案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

江西省赣州市石城中学2020届高三上学期第九次周考数学(文)(B)试卷 含答案

数学(B卷)试题)‎ ‎―、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。‎ ‎1. 设集合,集合,则( )‎ A. B. C. D. ‎ ‎2. 下列函数中,在内单调递减,并且是偶函数的是( )‎ A. B. C. D.‎ ‎3.下列命题正确的是(  )‎ A.单位向量都相等 B.若a与b共线,b与c共线,则a与c共线 C.若|a+b|=|a-b|,则a·b=0‎ D.若a与b都是单位向量,则a·b=1.‎ ‎4.命题“对任意,”的否定是( )‎ A. 不存在, B. 存在,‎ C. 存在, D. 存在,, ‎ ‎5.要得到函数y=一sin3x的图象,只需将函数y=sin3x+cos3x的图象 ( )‎ A.向右平移个单位长度 B.向左平移个单位长度 C. 向右平移个单位长度 D.向左平移个单位长度 ‎6.已知等差数列中的前n项和,若 A.145 B. C.161 D. ‎ ‎7.在△ABC中,角所对的边分别为,若,则这个三角形一定是( )‎ A.等边三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形 ‎8.《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有女善织,日益功疾(注:从第2天开始,每天比前一天多织相同量的布),第一天织5尺布,现在一月(按30天计),共织390尺布”,则从第2天起每天比前一天多织( )尺布。‎ A. B. C. D.‎ ‎9.在中,,,,则在方向上的投影是( )‎ A. 4 B. 3 C. -4 D. -3‎ ‎10.函数在定义域R内可导,若且当,设则( ).‎ A. B. C. D.‎ ‎11.在中,角,,所对应的边分别为,若,,则面积的最大值为( )‎ A. B. C. D. ‎ ‎12.已知函数,若是的唯一极值点,则实数的取值范围是( )‎ A.(-∞,e ) B.(-∞,e] C.(-e, +∞) D.[-e, +∞) ‎ 二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡相应位置上。‎ ‎13. 已知,则的值________.‎ ‎14. 已知,则____________.‎ ‎15.在数列中,若则的值为______.‎ ‎16.在中,角,,所对应的边分别为,若,,则面积的最大值为____________.‎ 三、解答题:本大题共6小题,共75分。解答应写出文字说明、证明过程或演算步骤。‎ ‎17.(本题满分10分)已知,的夹角为120°,且||=4,||=2,‎ 求:(1)( -2)·(+);(2)| +|;‎ ‎18. (本小题满分12分)设集合 ‎(1)若A∩B=B,求实数a的取值范围.‎ ‎(2)是否存在实数a,使A∪B={0,2,4},若存在,求出a的值;若不存在,说明理由.‎ ‎19. (本小题满分12分)已知函数的图像与轴相邻的交点距离为,并且过点 ‎(1)求函数的解析式 ; ‎ ‎ (2)设函数,求在区间上的最大值和最小值。‎ ‎20. (本小题满分12分)在等差数列中,,其前项和为,等比数列的各项均为正数,,且,.‎ ‎(1)求数列和的通项公式; ‎ ‎(2)设,求数列的前n项和.‎ ‎21. (本小题满分12分)在△ABC中,角A、B、C的对边分别为a、b、c,向量=(,),‎ ‎=(,),满足=‎ ‎(Ⅰ)求角B的大小;‎ ‎(Ⅱ)设=(sin(C+),), (), 有最大值为,求k的值。‎ ‎22.(本小题满分12分)已知函数.‎ ‎(1)当时,求的单调区间;‎ ‎(2)当时,证明:.‎ 数学(B卷)‎ 一:选择题:BACCB CCDDB AB 二:填空题 13.5 14. -1 15 16 1‎ 三:解答题 ‎17.解:(1)‎ ‎(2)‎ ‎18.(1)易知A={0,4}.因为A∩B=B,所以B⊆A. ……2分 ‎(1)当a=0时,B={4},满足题意:‎ ‎(2)当a≠0时,若B=⌀, 则方程ax2-2x+8=0无实根,于是Δ=4-32a<0,即a>.‎ ‎(3)若B≠⌀,则B={0}或{4}或{0,4},‎ 经检验a均无解.‎ 综上所述,实数a的取值范围为.……6分 ‎(2)要使A∪B={0,2,4},因为A={0,4},B={x|ax2-2x+8=0},‎ 所以只有B={2}或{0,2}或{2,4}三种可能. ……8分 ‎(1)若B={2},则有a无解;(2)若B={0,2},则有a无解;‎ ‎(3)若B={2,4},则有a无解, 故不存在实数a,使A∪B={0,2,4}.……12分 ‎19.(1)由已知函数的周期,……1分 把点代入得,……3分 ‎……分4‎ ‎(2)‎ ‎ ……7分 ‎,……10分 ‎……12分 ‎20.解:(1)设等差数列的公差为,等比数列的公比为,则 ‎,………………2分 解得,,………………4分 所以,.………………6分 ‎(2),‎ 所以,①‎ ‎ ,②………………9分 ‎①-②得:‎ ‎,……………………11分 所以.……………………12分 ‎21.解:(Ⅰ)由条件=,两边平方得,又 ‎=(sinA,b+c),=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,‎ 根据正弦定理,可化为a(a-c)+(b+c)(c-b)=0,即,………..2分 又由余弦定理=2acosB,所以cosB=,B=………..4分 ‎(Ⅱ)m=(sin(C+),),n=(2,kcos2A) (), ‎ ‎=2sin(C+)+ kcos2A=2sin(C+B)+kcos2A=2sinA+k-=-k+2sinA+=-+......6分 而0
查看更多