- 2021-06-24 发布 |
- 37.5 KB |
- 9页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学专题复习:课时达标检测(十七) 导数与函数的综合问题
课时达标检测(十七) 导数与函数的综合问题 一、全员必做题 1.(2017·宜州调研)设f(x)=|ln x|,若函数g(x)=f(x)-ax在区间(0,4)上有三个零点,则实数a的取值范围是( ) A. B. C. D. 解析:选D 令y1=f(x)=|ln x|,y2=ax,若函数g(x)=f(x)-ax在区间(0,4)上有三个零点,则y1=f(x)=|ln x|与y2=ax的图象(图略)在区间(0,4)上有三个交点.由图象易知,当a≤0时,不符合题意;当a>0时,易知y1=|ln x|与y2=ax的图象在区间(0,1)上有一个交点,所以只需要y1=|ln x|与y2=ax的图象在区间(1,4)上有两个交点即可,此时|ln x|=ln x,由ln x=ax,得a=.令h(x)=,x∈(1,4),则h′(x)=,故函数h(x)在(1,e)上单调递增,在(e,4)上单调递减,h(e)==,h(1)=0,h(4)==,所以k>1,则下列结论中一定错误的是( ) A.f< B.f> C.f< D.f> 解析:选C 由已知,构造函数g(x)=f(x)-kx,则g′(x)=f′(x)-k>0,∴函数g(x)在R上单调递增,且>0,∴g>g(0),即f->-1,即f>,∴选项C错误,选项D正确.构造函数h(x)=f(x)-x,则h′(x)=f′(x)-1>0,∴函数h(x)在R上单调递增,且>0,∴h>h(0),即f->-1,即f>-1,但选项A、B无法判断,故选C. 3.已知f(x)=x2++c(b,c是常数)和g(x)=x+是定义在M={x|1≤x≤4}上的函数,对于任意的x∈M,存在x0∈M使得f(x)≥f(x0),g(x)≥g(x0),且f(x0)=g(x0),则f(x)在M上的最大值为( ) A. B.5 C.6 D.8 解析:选B 因为g(x)=x+≥2=1(当且仅当x=2时等号成立),所以f(2)=2++c=g(2)=1,所以c=-1-,所以f(x)=x2+-1-,所以f′(x)=x-=.因为f(x)在x=2处有最小值,且x∈[1,4],所以f′(2)=0,即b=8,所以c=-5,所以f(x)=x2+-5,f′(x)=,所以f(x)在[1,2)上单调递减,在(2,4]上单调递增,而f(1)=+8-5=,f(4)=8+2-5=5,所以函数f(x)在M上的最大值为5,故选B. 4.已知函数f(x)=ax+xln x(a∈R). (1)若函数f(x)在区间[e,+∞)上为增函数,求a的取值范围; (2)当a=1且k∈Z时,不等式k(x-1)查看更多