- 2021-06-17 发布 |
- 37.5 KB |
- 8页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
数学(文)卷·2018届甘肃省靖远二中高二下学期期中考试(2017-04)
2016-2017学年度靖远二中第二学期期中考试试题 高二数学(文科) 考试时间:120分钟 分值:150分 命题人:董泰来 审核人:张 杰 第I卷(选择题) 一、选择题:共12题 每题5分 共60分 1.已知复数z=1-2i,则=( ) A.1+i B.1-i C.-1+i D.-1-i 2.复数(a2-a-2)+(|a-1|-1)i(a∈R)是纯虚数,则有( ) A.a≠0 B.a≠2 C.a≠-1且a≠2 D.a=-1 3.甲、乙、丙、丁四位同学各自对A、B两变量的线性相关性做试验,并用回归分析方法分别求得相关系数r与残差平方和m如下表: 甲 乙 丙 丁 r 0.82 0.78 0.69 0.85 m 106 115 124 103 则哪位同学的试验结果体现A、B两变量有更强的线性相关性( ) A.甲 B.乙 C.丙 D.丁 4.应用反证法推出矛盾的推导过程中,可以把下列哪些作为条件使用( ) ①结论的反设;②已知条件;③定义、公理、定理等;④原结论. A.①② B.②③ C.①②③ D.①②④ 5.以的虚部为实部,以的实部为虚部的新复数是( ) A.2+2i B.2+i C. D. 6.已知方程=0.85x-85.7是根据女大学生的身高预报体重的回归方程,其中x,的单位分别是cm,kg,则该方程在样本(165,57)处的残差是( ) A.54.55 B.2.45 C.-2.45 D.111.55 7.用分析法证明:欲使①A>B,只需②C<D,这里①是②的( ) A.充分条件 B.必要条件 C.充要条件 D.既不充分也不必要条件 8.设复数,则复数的模=( ) A. B. C. D. 9.把病人到医院看病的过程用框图表示,则此框图称为( ) A.工序流程图 B.程序流程图 C.组织流程图 D.程序步骤图 10.已知复数满足|z|=2,则复数z在复平面上对应点所表示的图形是( ) A.圆 B.椭圆 C.双曲线 D.线段 11.已知i为虚数单位,复数,则复数在复平面上的对应点位于( ) A.第四象限 B.第三象限 C.第二象限 D.第一象限 12.直线:与圆:,(θ为参数)的位置关系是( ) A.相切 B.相离 C.直线过圆心 D.相交但直线不过圆心 第II卷(非选择题) 二、填空题:共4题 每题5分 共20分 13.____.(填“>”或“<”) 14.观察数列写出该数列的一个通项公式__________. 15.复数z=(m2-3m+2)+(m2-2m-8)i的共轭复数在复平面内的对应点位于第一象限,则实数m的取值范围是 . 16.若直线与圆:(为参数)相交于两点,且弦的中点坐标是,则直线的倾斜角为 . 三、解答题:共6题 共70分 17.(本题10分)据有关人士预测,我国将逐步进入新一轮消费周期,其特点是:城镇居民消费热点主要为商品住房、小轿车、电子信息产品、新型食品,以及服务消费和文化消费;农村消费热点是住房、家电.试画出我国消费的结构图. 18.(本题12分)为了研究某种细菌随时间x变化时,繁殖个数y的变化,收集数据如下: 天数x/天 1 2 3 4 5 6 繁殖个数y/个 6 12 25 49 95 190 (1)用天数x作解释变量,繁殖个数y作预报变量,作出这些数据的散点图; (2)描述解释变量x与预报变量y之间的关系; (3)计算相关指数. 19.(本题12分)已知复数是实数,是虚数单位. (1)求复数; (2)若复数所表示的点在第一象限,求实数m的取值范围. 20.(本题12分)某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表: 甲厂: 分组 [29.86,29.90) [29.90,29.94) [29.94,29.98) [29.98,30.02) 频数 12 63 86 182 分组 [30.02,30.06) [30.06,30.10) [30.10,30.14) 频数 92 61 4 乙厂: 分组 [29.86,29.90) [29.90,29.94) [29.94,29.98) [29.98,30.02) 频数 29 71 85 159 分组 [30.02,30.06) [30.06,30.10) [30.10,30.14) 频数 76 62 18 (1)试分别估计两个分厂生产零件为优质品的概率. (2)由以上统计数据填下面2×2列联表,并判断能否在犯错误的概率不超过0.01的前提下认为“两个分厂生产的零件的质量有差异”. 甲厂 乙厂 总计 优质品 非优质品 总计 21.(本题12分)是否存在实数m,使复数为纯虚数?若存在,求出m的值,否则,请说明理由. 22.(本题12分)在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.圆C1,直线C2的极坐标方程分别为,ρcos (θ-)=. (I)求C1与C2交点的极坐标; (II)设P为C1的圆心,Q为C1与C2交点连线的中点.已知直线PQ的参数方程为 (t∈R为参数),求a,b的值. 参考答案(文科) 一、选择题 1 2 3 4 5 6 7 8 9 10 11 12 A D D C A B B A B A B D 二、填空题 13.< 14.(n∈N*) 15.(-2,1)∪(2,4) 16 . 三、解答题 17.【解析】总消费可分为城镇消费与农村消费,终端消费为同一级别. . 18.(1)所作散点图如图所示. (2)由散点图看出样本点分布在一条指数型函数y=c1的周围,于是令z=ln y,则 x 1 2 3 4 5 6 z 1.79 2.48 3.22 3.89 4.55 5.25 由计算得:, 则有. (3) 6.08 12.12 24.17 48.18 96.06 191.52 y 6 12 25 49 95 190 , , , 即解释变量“天数”对预报变量“繁殖细菌个数”解释了99.98%. 19.解:(1)∵z=bi(b∈R),∴. 又∵是实数,∴,∴b=﹣2,即z=﹣2i. (2)∵z=﹣2i,m∈R,∴(m+z)2=(m﹣2i)2=m2﹣4mi+4i2=(m2﹣4)﹣4mi, 又∵复数所表示的点在第一象限,∴, 解得m<﹣2,即m∈(﹣∞,﹣2)时,复数f(4)所表示的点在第一象限. 20. (1)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件为优质品的概率估计为. 乙厂抽查的产品中有320件优质品,从而乙厂生产的零件为优质品的概率估计为. (2) 甲厂 乙厂 总计 优质品 360 320 680 非优质品 140 180 320 总计 500 500 1 000 K2的观测值, 所以在犯错误的概率不超过0.01的前提下认为“两个分厂生产的零件的质量有差异”. 20.(1)点Z在复平面的第二象限内, 则解得a<-3. (2)点Z在x轴上方, 则即(a+3)(a-5)>0, 解得a>5或a<-3. (3)因为点Z在直线x+y+7=0上, 所以, 即a3+2a2-15a-30=0, 所以(a+2)(a2-15)=0, 故a=-2或. 所以a=-2或时,点Z在直线x+y+7=0上. 21.假设存在实数m使z是纯虚数,则 由①,得m=-2或m=3. 当m=-2时,②式左端无意义; 当m=3时,②式不成立,故不存在实数m使z是纯虚数. 22.(1)圆C1的直角坐标方程为x2+(y-2)2=4,直线C2的直角坐标方程为x+y-4=0. 解得 所以C1与C2交点的极坐标为(4,),(2,). (2)由(1)可得,P点与Q点的直角坐标分别为(0,2),(1,3). 故直线PQ的直角坐标方程为x-y+2=0, 由参数方程可得y=-+1. 所以解得 【来源:全,品…中&高*考+网】查看更多