【数学】2018届一轮复习湘教版不等式的证明

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【数学】2018届一轮复习湘教版不等式的证明

选修4-5 第71讲 ‎1.(2016·全国卷Ⅱ)已知函数f(x)=+,M为不等式f(x)<2的解集.‎ ‎(1)求M;‎ ‎(2)证明:当a,b∈M时,<.‎ 解析:(1)f(x)= 当x≤-时,由f(x)<2得-2x<2,解得x>-1;‎ 当-<x<,f(x)<2;‎ 当x≥时,由f(x)<2得2x<2,解得x<1.‎ 所以f(x)<2的解集M={x|-1<x<1}.‎ ‎(2)证明:由(1)知,当a,b∈M时,-1<a<1,-1<b<1,从而(a+b)2-(1+ab)2=a2+b2-a2b2-1=(a2-1)(1-b2)<0.‎ 因此|a+b|<|1+ab|.‎ ‎2.(2015·湖南卷)设a>0,b>0,且a+b=+.证明:‎ ‎(1)a+b≥2;‎ ‎(2)a2+a<2与b2+b<2不可能同时成立.‎ 解析:由a+b=+=,a>0,b>0,得ab=1.‎ ‎(1)由基本不等式及ab=1,有a+b≥2=2,即a+b≥2.‎ ‎(2)假设a2+a<2与b2+b<2同时成立,则由a2+a<2及a>0得0<a<1;同理,0<b<1,从而ab<1,这与ab=1矛盾.故a2+a<2与b2+b<2不可能同时成立.‎ ‎3.(2014·福建卷)已知定义在R上的函数f(x)=|x+1|+|x-2|的最小值为a.‎ ‎(1)求a的值;‎ ‎(2)若p,q,r是正实数,且满足p+q+r=a,求证:p2+q2+r2≥3.‎ 解析:(1)因为|x+1|+|x-2|≥|(x+1)-(x-2)|=3,‎ 当且仅当-1≤x≤2时,等号成立,‎ 所以f(x)的最小值等于3,即a=3.‎ ‎(2)证明:由(1)知p+q+r=3,又因为p,q,r是正实数,‎ 所以(p2+q2+r2)(12+12+12)≥(p×1+q×1+r×1)2=(p+q+r)2=9,即p2+q2+r2≥3.‎ ‎4.(2015·全国卷Ⅱ节选)设a,b,c,d均为正数,且a+b=c+d.证明:+>+ 是<的充要条件.‎ 解析:①必要性:若|a-b|<|c-d|,则(a-b)2<(c-d)2,‎ 即(a+b)2-4ab<(c+d)2-4cd.‎ 因为a+b=c+d,所以ab>cd.‎ 所以a+b+2>c+d+2,即(+)2>(+)2 (*),‎ 由(*)式,得+>+.‎ ‎②充分性:若+>+,则(+)2>(+)2,‎ 即a+b+2>c+d+2.‎ 因为a+b=c+d,所以ab>cd.‎ 于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.‎ 因此|a-b|<|c-d|.‎ 综上,+>+是|a-b|<|c-d|的充要条件.‎
查看更多

相关文章

您可能关注的文档