【数学】2018届一轮复习苏教版古典概型学案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【数学】2018届一轮复习苏教版古典概型学案

第55课 古典概型 ‎[最新考纲]‎ 内容 要求 A B C 古典概型 ‎√‎ ‎1.基本事件的特点 ‎(1)任何两个基本事件是互斥的.‎ ‎(2)任何事件(除不可能事件)都可以表示成基本事件的和.‎ ‎2.古典概型 具有以下两个特点的概率模型称为古典概率模型,简称古典概型.‎ ‎(1)所有基本事件只有有限个.‎ ‎(2)每个基本事件的发生都是等可能的.‎ ‎3.如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是;如果某个事件A包括的结果有m个,那么事件A的概率P(A)=.‎ ‎4.古典概型的概率公式 P(A)=.‎ ‎1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)‎ ‎(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.(  )‎ ‎(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.(  )‎ ‎(3)从-3,-2,-1,0,1,2中任取一数,取到的数小于0与不小于0的可能性相同.(  )‎ ‎(4)利用古典概型的概率可求“在边长为2的正方形内任取一点,这点到正方形中心距离小于或等于‎1”‎的概率.(  )‎ ‎[答案] (1)× (2)× (3)√ (4)×‎ ‎2.(教材改编)下列试验中,是古典概型的有________.(填序号)‎ ‎①向上抛一枚质地不均匀的硬币,观察正面向上的概率;‎ ‎②向正方形ABCD内,任意抛掷一点P,点P恰与点C重合;‎ ‎③从1,2,3,4四个数中,任取两个数,求所取两数之一是2的概率;‎ ‎④在线段[0,5]上任取一点,求此点小于2的概率.‎ ‎③ [由古典概型的意义和特点知,只有③是古典概型.]‎ ‎3.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为________.‎  [甲、乙两名运动员选择运动服颜色的情况为(红,红),(红,白),(红,蓝),(白,白),(白,红),(白,蓝),(蓝,蓝),(蓝,白),(蓝,红),共9种.‎ 而同色的有(红,红),(白,白),(蓝,蓝),共3种.‎ 所以所求概率P==.]‎ ‎4.(2016·全国卷Ⅲ改编)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是________.‎  [∵Ω={(M,1),(M,2),(M,3),(M,4),(M,5),(I,1),(I,2),(I,3),(I,4),(I,5),(N,1),(N,2),(N,3),(N,4),(N,5)},‎ ‎∴事件总数有15种.‎ ‎∵正确的开机密码只有1种,∴P=.]‎ ‎5.(2016·江苏高考)将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.‎  [将一颗质地均匀的骰子先后抛掷2次,所有等可能的结果有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),…,(6,6),共36种情况.设事件A=“出现向上的点数之和小于‎10”‎,其对立事件=“出现向上的点数之和大于或等于‎10”‎,包含的可能结果有(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),共6种情况.所以由古典概型的概率公式,得P()==,所以P(A)=1-=.]‎ 简单古典概型的概率 ‎ (1)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为________. 【导学号:62172303】‎ ‎(2)(2016·全国卷Ⅰ改编)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是________.‎ ‎(1)0.6 (2) [(1)记3件合格品分别为A1,A2,A3,2件次品分别为B1,B2,从5件产品中任取2件,有(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A2,A3),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2),共10种可能.其中恰有一件次品有6种可能,由古典概型得所求事件概率为=0.6.‎ ‎(2)从4种颜色的花中任选2种颜色的花种在一个花坛中,余下2种颜色的花种在另一个花坛的种数有:红黄—白紫、红白—黄紫、红紫—白黄、黄白—红紫、黄紫—红白、白紫—红黄,共6种,其中红色和紫色的花不在同一花坛的种数有:红黄—白紫、红白—黄紫、黄紫—红白、白紫—红黄,共4种,故所求概率为P==.]‎ ‎[规律方法] 1.计算古典概型事件的概率可分三步,(1)计算基本事件总个数n;(2)计算事件A所包含的基本事件的个数m;(3)代入公式求出概率P.‎ ‎2.用列举法写出所有基本事件时,可借助“树状图”列举,以便做到不重、不漏.‎ ‎[变式训练1] (1)(2017·南京模拟)将一颗骰子连续抛掷2次,向上的点数分别为m,n,则点P(m,n)在直线y=x下方的概率为________.‎ ‎(2)(2015·江苏高考)袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球.从中一次随机摸出2只球,则这2只球颜色不同的概率为______.‎ ‎(1) (2) [(1)将一颗骰子连续抛掷2次,共有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),…,(6,6),共36种不同的结果,其中在直线y=x下方的有:(3,1),(4,1),(5,1),(5,2),(6,1),(6,2)共6种不同的结果,故所求事件的概率P==.‎ ‎(2)从4个球中一次随机摸出2只球,共有(红,白),(红,黄1),(红,黄2),(白,黄1),(白,黄2),(黄1,黄2‎ ‎)共6种情况,则2只颜色不同的共有5种情况,故所求事件的概率P=.]‎ 复杂古典概型的概率 ‎ (2016·山东高考)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图551所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:‎ 图551‎ ‎①若xy≤3,则奖励玩具一个;‎ ‎②若xy≥8,则奖励水杯一个;‎ ‎③其余情况奖励饮料一瓶.‎ 假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.‎ ‎(1)求小亮获得玩具的概率;‎ ‎(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.‎ ‎ [解] 用数对(x,y)表示儿童参加活动先后记录的数,则基本事件空间Ω与点集S={(x,y)|x∈N,y∈N,1≤x≤4,1≤y≤4}一一对应.‎ 因为S中元素的个数是4×4=16,‎ 所以基本事件总数n=16.‎ ‎(1)记“xy≤‎3”‎为事件A,则事件A包含的基本事件数共5个,即(1,1),(1,2),(1,3),(2,1),(3,1).‎ 所以P(A)=,即小亮获得玩具的概率为.‎ ‎(2)记“xy≥‎8”‎为事件B,“3,‎ 所以小亮获得水杯的概率大于获得饮料的概率.‎ ‎[规律方法] 1.本题易错点有两个:(1)题意理解不清,不能把基本事件列举出来;(2)不能恰当分类,列举基本事件有遗漏.‎ ‎2.求较复杂事件的概率问题,解题关键是理解题目的实际含义,把实际问题转化为概率模型,必要时将所求事件转化成彼此互斥事件的和,或者先求其对立事件的概率,进而再用互斥事件的概率加法公式或对立事件的概率公式求解.‎ ‎[变式训练2] 某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)‎ 参加书法社团 未参加书法社团 参加演讲社团 ‎8‎ ‎5‎ 未参加演讲社团 ‎2‎ ‎30‎ ‎(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;‎ ‎(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率. 【导学号:62172304】‎ ‎[解] (1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人,‎ 故至少参加上述一个社团的共有45-30=15人,‎ 所以从该班随机选1名同学,该同学至少参加上述一个社团的概率为P==.‎ ‎(2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有 ‎{A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B3},{A3,B1},{A3,B2},{A3,B3},{A4,B1},{A4,B2},{A4,B3},{A5,B1},{A5,B2},{A5,B3},共15个.‎ 根据题意,这些基本事件的出现是等可能的.‎ 事件“A1被选中且B1未被选中”所包含的基本事件有{A1,B2},{A1,B3},共2个.‎ 因此A1被选中且B1未被选中的概率为P=.‎ 古典概型与统计的综合应用 ‎ 某网络营销部门随机抽查了某市200名网友在‎2016年11月11日的网购金额,所得数据如下表:‎ 网购金额(单位:千元)‎ 人数 频率 ‎(0,1]‎ ‎16‎ ‎0.08‎ ‎(1,2]‎ ‎24‎ ‎0.12‎ ‎(2,3]‎ x p ‎(3,4]‎ y q ‎(4,5]‎ ‎16‎ ‎0.08‎ ‎(5,6]‎ ‎14‎ ‎0.07‎ 合计 ‎200‎ ‎1.00‎ 已知网购金额不超过3千元与超过3千元的人数比恰为3∶2.‎ ‎(1)试确定x,y,p,q的值,并补全频率分布直方图(如图);‎ ‎(2)该营销部门为了了解该市网友的购物体验,从这200名网友中,用分层抽样的方法从网购金额在(1,2]和(4,5]的两个群体中确定5人中进行问卷调查,若需从这5人中随机选取2人继续访谈,则此2人来自不同群体的概率是多少?‎ 图552‎ ‎[解] (1)根据题意有:‎ 解得 ‎∴p=0.4,q=0.25.‎ 补全频率分布直方图如图所示,‎ ‎(2)根据题意,网购金额在(1,2]内的人数为×5=3(人),记为:a,b,c.‎ 网购金额在(4,5]内的人数为×5=2(人),记为:A,B.则从这5人中随机选取2人的选法为:(a,b),(a,c),(a,A),(a,B),(b,c),(b,A),(b,B),(c,A),(c,B),(A,B)共10种.记2人来自不同群体的事件为M,则M中含有(a,A),(a,B),(b,A),(b,B),(c,A),(c,B)共6种.‎ ‎∴P(M)==.‎ ‎[规律方法]‎ ‎ 有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点,概率与统计结合题,无论是直接描述还是利用概率分布表、分布直方图、茎叶图等给出信息,准确从题中提炼信息是关键.‎ ‎[变式训练3] 海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.‎ 地区 A B C 数量 ‎50‎ ‎150‎ ‎100‎ ‎(1)求这6件样品中来自A,B,C各地区商品的数量;‎ ‎(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.‎ ‎[解] (1)因为样本容量与总体中的个体数的比是 =,‎ 所以样本中包含三个地区的个体数量分别是 ‎50×=1,150×=3,100×=2.所以A,B,C三个地区的商品被选取的件数分别为1,3,2.‎ ‎(2)设6件来自A,B,C三个地区的样品分别为:A;B1,B2,B3;C1,C2.‎ 则从6件样品中抽取的这2件商品构成的所有基本事件为{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2} ,{B1,B3},{B1,C1},{B1,C2},{B2 ,B3},{B2,C1},{B2,C2},{B3,C1},{B3 ,C2},{C1,C2},共15个.‎ 每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.‎ 记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有 ‎{B1,B2},{B1,B3},{B2,B3},{C1,C2},共4个.‎ 所以这2件商品来自相同地区的概率P(D)=.‎ ‎[思想与方法]‎ ‎1.古典概型计算三步曲 第一,本试验是不是等可能的;第二,本试验的基本事件有多少个;第三,事件A是什么,它包含的基本事件有多少个.‎ ‎2.确定基本事件的方法 ‎ ‎(1)当基本事件总数较少时,可列举计算;‎ ‎(2)列表法、树状图法.‎ ‎3.较复杂事件的概率可灵活运用互斥事件、对立事件的概率公式简化运算.‎ ‎[易错与防范]‎ 古典概型的重要特征是事件发生的等可能性,一定要注意在计算基本事件总数和事件包括的基本事件个数时,它们是否是等可能的.‎ 课时分层训练(五十五)‎ A组 基础达标 ‎(建议用时:30分钟)‎ 一、填空题 ‎1.(2017·镇江期中)从甲、乙、丙3名候选学生中选取2名作为青年志愿者,则甲被选中的概率为________.‎  [从甲、乙、丙3名候选学生中选取2名共有(甲,乙),(甲,丙),(乙,丙)三种情况,甲被选中的概率P=.]‎ ‎2.(2017·无锡期中)某人抛掷质地均匀的骰子,其抛掷两次的数字之和为7的概率是________.‎  [抛掷两次骰子共有36种不同的结果,其中数字之和为1的共有(1,6),(6,1),(2,5),(5,2),(3,4),(4,3),6种不同的结果,故所求事件的概率P==.]‎ ‎3.将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________. 【导学号:62172305】‎  [设两本不同的数学书为a1,a2,1本语文书为b.则在书架上的摆放方法有a‎1a2b,a1ba2,a‎2a1b,a2ba1,ba‎1a2,ba‎2a1,共6种,其中数学书相邻的有4种.‎ 因此2本数学书相邻的概率P==.]‎ ‎4.(2017·扬州模拟)从1,2,3,4,5这5个数中,随机抽取2个不同的数,则这2个数的和为偶数的概率是________.‎  [从5个数中随机抽取2个不同的数,共有10种不同的结果,其中2个数的和为偶数,共有(1,3),(1,5),(3,5),(2,4)4种不同的结果,故所求事件的概率P==.]‎ ‎5.同时抛掷三枚质地均匀、大小相同的硬币一次,则至少有两枚硬币正面向上的概率为________.‎  [所有可能的试验结果有(上,上,上),(上,上,下),(上,下,上),(下,上,上),(下,下,下),(下,下,上),(下,上,下),(上,下, 下)共8种.只有一枚正面向上的试验结果只有3种,全部向下的1种,故所求事件的概率P=1-=.]‎ ‎6.(2015·全国卷Ⅰ改编)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为________.‎  [从1,2,3,4,5中任取3个不同的数共有如下10个不同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所以概率为.]‎ ‎7.在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是________.‎  [记“两人都中奖”为事件A,‎ 设中一、二等奖及不中奖分别记为1,2,0,那么甲、乙抽奖结果有(1,2),(1,0),(2,1),(2,0),(0,1),(0,2),共6种.其中甲、乙都中奖有(1,2),(2,1),共2种,所以P(A)==.]‎ ‎8.在集合A={2,3}中随机取一个元素m,在集合B={1,2,3}中随机取一个元素n,得到点P(m,n),则点P在圆x2+y2=9内部的概率为________. ‎ ‎【导学号:62172306】‎  [点P(m,n)共有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),6种情况,只有(2,1),(2,2)这2个点在圆x2+y2=9的内部,所求概率为=.]‎ ‎9.在集合中任取一个元素,所取元素恰好满足方程cos x=的概率是________.‎  [基本事件总数为10,满足方程cos x=的基本事件数为2,故所求概率为P==.]‎ ‎10.从集合{2,3,4,5}中随机抽取一个数a,从集合{1,3,5}中随机抽取一个数b,则向量m=(a,b)与向量n=(1,-1)垂直的概率为________. ‎ ‎【导学号:62172307】‎  [由题意知,向量m共有4×3=12个,‎ 由m⊥n,得m·n=0,即a=b,则满足m⊥n的m有(3,3),(5,5)共2个,故所求概率P==.]‎ 二、解答题 ‎11.设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.‎ ‎(1)求应从这三个协会中分别抽取的运动员的人数;‎ ‎(2)将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6.现从这6名运动员中随机抽取2人参加双打比赛.‎ ‎①用所给编号列出所有可能的结果;‎ ‎②设A为事件“编号为A5和A6的两名运动员中至少有1人被抽到”,求事件A发生的概率.‎ ‎[解] (1)应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2.‎ ‎(2)①从6名运动员中随机抽取2人参加双打比赛的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,‎ A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15种.‎ ‎②编号为A5和A6的两名运动员中至少有1人被抽到的所有可能结果为{A1,A5},{A1,A6},{A2,A5},{A2,A6},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共9种.因此,事件A发生的概率P(A)==.‎ ‎12.一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取一张,将抽取的卡片上的数字依次记为a,b,c.‎ ‎(1)求“抽取的卡片上的数字满足a+b=c”的概率;‎ ‎(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.‎ ‎[解] (1)由题意知,(a,b,c)所有的可能为 ‎(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.‎ 设“抽取的卡片上的数字满足a+b=c”为事件A,‎ 则事件A包括(1,1,2),(1,2,3),(2,1,3),共3种.‎ 所以P(A)==.‎ 因此,“抽取的卡片上的数字满足a+b=c”的概率为.‎ ‎(2)设“抽取的卡片上的数字a,b,c不完全相同“为事件B,则事件包括(1,1,1),(2,2,2),(3,3,3),共3种.‎ 所以P(B)=1-P()=1-=.‎ 因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为.‎ B组 能力提升 ‎(建议用时:15分钟)‎ ‎1.已知函数f(x)=x3+ax2+b2x+1,若a是从1,2,3三个数中任取的一个数,b是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为________.‎  [对函数f(x)求导可得f′(x)=x2+2ax+b2,要满足题意需x2+2ax+b2=0有两个不等实根,即Δ=4(a2-b2)>0,即a>b.又(a,b)的取法共有9种,其中满足a>b的有(1,0),(2,0),(2,1),(3,0),(3,1),(3,2),共6种,故所求的概率P==.]‎ ‎2.将号码分别为1,2,3,4的四个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个小球,其号码为a,放回后,乙从此口袋中再摸出一个小球,其号码为b,则使不等式a-2b+4<0成立的事件发生的概率为________.‎  [由题意知(a,b)的所有可能结果有4×4=16个.其中满足a-2b+4<0的有(1,3),(1,4),(2,4),(3,4)共4种结果.‎ 故所求事件的概率P==.]‎ ‎3.某饮料公司对一名员工进行测试以便确定其考评级别.公司准备了两种不同的饮料共5杯,其颜色完全相同,并且其中3杯为A饮料,另外2杯为B饮料,公司要求此员工一一品尝后,从5杯饮料中选出3杯A饮料.若该员工3杯都选对,则评为优秀;若3杯选对2杯,则评为良好;否则评为合格.假设此人对A和B两种饮料没有鉴别能力.‎ ‎(1)求此人被评为优秀的概率;‎ ‎(2)求此人被评为良好及以上的概率.‎ ‎[解] 将5杯饮料编号为:1,2,3,4,5,编号1,2,3表示A饮料,编号4,5表示B饮料,则从5杯饮料中选出3杯的所有可能情况为:(123),(124),(125),(134),(135),(145),(234),(235),(245),(345),可见共有10种.‎ 令D表示此人被评为优秀的事件,E表示此人被评为良好的事件,F表示此人被评为良好及以上的事件,则 ‎(1)P(D)=,即此人被评为优秀的概率为.‎ ‎(2)P(E)=,P(F)=P(D)+P(E)=.‎ ‎∴此人被评为良好及以上的概率为.‎ ‎4.一个袋中有4个大小相同的小球,其中红球1个,白球2个,黑球1个,现从袋中有放回地取球,每次随机取一个.‎ ‎(1)求连续取两次都是白球的概率;‎ ‎(2)假设取一个红球记2分,取一个白球记1分,取一个黑球记0分,若连续取三次,则分数之和为4分的概率是多少?‎ ‎[解] (1)连续取两次的基本事件有:(红,红),(红,白1),(红,白2),(红,黑);(白1,红),(白1,白1),(白1,白2),(白1,黑);(白2,红),(白2,白1),(白2,白2),(白2,黑);(黑,红),(黑,白1),(黑,白2),(黑,黑),共16个.‎ 连续取两次都是白球的基本事件有:(白1,白1),(白1,白2),(白2,白1),(白2,白2),共4个.‎ 故所求概率为=.‎ ‎(2)连续取三次的基本事件有:(红,红,红),(红,红,白1),(红,红,白2),(红,红,黑);(红,白1,红),(红,白1,白1),(红,白1,白2),(红,白1,黑),…,共64个.‎ 因为取一个红球记2分,取一个白球记1分,取一个黑球记0分,若连续取三次,则分数之和为4分的基本事件有:(红,白1,白1),(红,白1,白2),(红,白2,白1),(红,白2,白2),(白1,红,白1),(白1,红,白2),(白2,红,白1),(白2,红,白2),(白1,白1,红),(白1,白2,红),(白2,白1,红),(白2,白2,红),(红,红,黑),(红,黑,红),(黑,红,红),共15个.‎ 故所求概率为.‎
查看更多

相关文章

您可能关注的文档