- 2021-06-11 发布 |
- 37.5 KB |
- 4页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2020届数学文一轮复习第三章第6讲利用导数研究函数零点问题作业
1.(2017·高考全国卷Ⅲ)已知函数f(x)=x2-2x+a(ex-1+e-x+1)有唯一零点,则a=( ) A.- B. C. D.1 解析:选C.由f(x)=x2-2x+a(ex-1+e-x+1),得f(2-x)=(2-x)2-2(2-x)+a[e2-x-1+e-(2-x)+1]=x2-4x+4-4+2x+a(e1-x+ex-1)=x2-2x+a(ex-1+e-x+1),所以f(2-x)=f(x),即x=1为f(x)图象的对称轴.由题意,f(x)有唯一零点,所以f(x)的零点只能为x=1,即f(1)=12-2×1+a(e1-1+e-1+1)=0,解得a=.故选C. 2.已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是( ) A.(2,+∞) B.(-∞,-2) C.(1,+∞) D.(-∞,-1) 解析:选B.f′(x)=3ax2-6x, 当a=3时,f′(x)=9x2-6x=3x(3x-2), 则当x∈(-∞,0)时,f′(x)>0;x∈时,f′(x)<0;x∈时,f′(x)>0,注意f(0)=1,f=>0,则f(x)的大致图象如图(1)所示: 不符合题意,排除A、C. 当a=-时,f′(x)=-4x2-6x=-2x(2x+3),则当x∈时,f′(x)<0,x∈时,f′(x)>0,x∈(0,+∞)时,f′(x)<0,注意f(0)=1,f=-,则f(x)的大致图象如图(2)所示. 不符合题意,排除D. 3.已知函数f(x)=a+ln x(a∈R). (1)求f(x)的单调区间; (2)试求f(x)的零点个数,并证明你的结论. 解:(1)函数f(x)的定义域是(0,+∞), f′(x)=()′ln x+·=, 令f′(x)>0, 解得x>e-2,令f′(x)<0, 解得0<x<e-2, 所以f(x)在(0,e-2)上递减,在(e-2,+∞)上递增. (2)由(1)得f(x)min=f(e-2)=a-, 显然a>时,f(x)>0,无零点, a=时,f(x)=0,有1个零点, a<时,f(x)<0,有2个零点. 4.已知函数f(x)=(2-a)(x-1)-2ln x(a∈R). (1)当a=1时,求f(x)的单调区间; (2)若函数f(x)在上无零点,求a的取值范围. 解:(1)当a=1时,f(x)=x-1-2ln x, 则f′(x)=1-=, 由f′(x)>0,得x>2, 由f′(x)<0,得0<x<2, 故f(x)的单调递减区间为(0,2),单调递增区间为(2,+∞). (2)因为f(x)<0在区间上恒成立不可能, 故要使函数f(x)在上无零点, 只要对任意的x∈,f(x)>0恒成立, 即对x∈,a>2-恒成立. 令h(x)=2-,x∈, 则h′(x)=, 再令m(x)=2ln x+-2,x∈, 则m′(x)=<0, 故m(x)在上为减函数, 于是,m(x)>m=4-2ln 3>0, 从而h′(x)>0,于是h(x)在上为增函数, 所以h(x)<h=2-3ln 3, 所以a的取值范围为[2-3ln 3,+∞). 5.(2019·武汉调研)(1)求函数f(x)=的最大值; (2)若函数g(x)=ex-ax有两个零点,求实数a的取值范围. 解:(1)对f(x)=求导得,f′(x)=. 易知当0查看更多