- 2021-06-11 发布 |
- 37.5 KB |
- 10页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考卷 05高考文科数学(江西卷)试题及答案
2005年高考文科数学江西卷试题及答案 Y 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 第I卷1至2页,第Ⅱ卷3至4页,共150分. 第I卷 注意事项: 1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上,考生要认真核对答题卡粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致. 2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效 3.考试结束,临考员将试题卷、答题卡一并收回. 参考公式: 如果事件A、B互斥,那么 球的表面积公式 P(A+B)=P(A)+P(B) 如果事件A、B相互独立,那么 其中R表示球的半径 P(A·B)=P(A)·P(B) 如果事件A在一次试验中发生的概率是 球的体积公式 P,那么n次独立重复试验中恰好发生k 次的概率 其中R表示球的半径 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合()= ( ) A.{1} B.{1,2} C.{2} D.{0,1,2} 2.已知 ( ) A. B.- C. D.- 3.的展开式中,含x的正整数次幂的项共有 ( ) A.4项 B.3项 C.2项 D.1项 4.函数的定义域为 ( ) A.(1,2)∪(2,3) B. C.(1,3) D.[1,3] 5.设函数为 ( ) A.周期函数,最小正周期为 B.周期函数,最小正周期为 C.周期函数,数小正周期为 D.非周期函数 6.已知向量 ( ) A.30° B.60° C.120° D.150° 7.将9个(含甲、乙)平均分成三组,甲、乙分在同一组,则不同分组方法的种数为( ) A.70 B.140 C.280 D.840 8.在△ABC中,设命题命题q:△ABC是等边三角形,那么命题p是命题q的 ( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分又不必要条件 9.矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角B—AC—D,则四面体ABCD的外接球的体积为 ( ) A. B. C. D. 10.已知实数a、b满足等式下列五个关系式: ①01,解关于x的不等式;. 18.(本小题满分12分) 已知向量. 求函数f(x)的最大值,最小正周期,并写出f(x)在[0,π]上的单调区间. 19.(本小题满分12分) A、B两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A赢得B一张卡片,否则B赢得A一张卡片,如果某人已赢得所有卡片,则游戏终止.求掷硬币的次数不大于7次时游戏终止的概率. 20.(本小题满分12分) 如图,在长方体ABCD—A1B1C1D1,中,AD=AA1=1,AB=2,点E在棱AB上移动. (1)证明:D1E⊥A1D; (2)当E为AB的中点时,求点E到面ACD1的距离; (3)AE等于何值时,二面角D1—EC—D的大小为. 21.(本小题满分12分) 如图,M是抛物线上y2=x上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB. (1)若M为定点,证明:直线EF的斜率为定值; (2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹方程. 22.(本小题满分14分) 已知数列{an}的前n项和Sn满足Sn-Sn-2=3求数列{an}的通项公式. 2005年高考文科数学江西卷试题及答案 参考答案 1-6: DBBAAC 7-10: ACCBDA 13. 14. 15. 16. ③④ 17.解:(1)将得 (2)不等式即为 即 ①当 ②当 ③. 18.解: 当时, 最小正周期为 在是单调增加,在是单调减少 19.解:设表示游戏终止时掷硬币的次数,正面出现的次数为m,反面出现的次数为n,则,可得: 20.解法(一) (1)证明:∵AE⊥平面AA1DD1,A1D⊥AD1,∴A1D⊥D1E (2)设点E到面ACD1的距离为h,在△ACD1中,AC=CD1=,AD1=, 故 (3)过D作DH⊥CE于H,连D1H、DE,则D1H⊥CE, ∴∠DHD1为二面角D1—EC—D的平面角. 设AE=x,则BE=2-x 解法(二):以D为坐标原点,直线DA,DC,DD1分别为x,y,z轴,建立空间直角坐标系,设AE=x,则A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0)C(0,2,0) (1) (2)因为E为AB的中点,则E(1,1,0), 从而, , 设平面ACD1的法向量为, 则 也即,得,从而,所以点E到平面AD1C的距离为 (3)设平面D1EC的法向量,∴ 由 令b=1, ∴c=2,a=2-x, ∴ 依题意 ∴(不合,舍去), . ∴AE=时,二面角D1—EC—D的大小为. 查看更多