高考理科数学二轮专项训练专题:11 概率统计

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高考理科数学二轮专项训练专题:11 概率统计

专题11 概率与统计 一、选择题 ‎1.(2018全国卷Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:‎ ‎ ‎ 建设前经济收入构成比例 建设后经济收入构成比例 则下面结论中不正确的是 A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加了一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 A【解析】通解 设建设前经济收入为,则建设后经济收入为,则由饼图可得建设前种植收入为,其他收入为,养殖收入为.建设后种植收入为,其他收入为,养殖收入为,养殖收入与第三产业收入的总和为,所以新农村建设后,种植收入减少是错误的.故选A.‎ 优解 因为,所以新农村建设后,种植收入增加,而不是减少,所以A是错误的.故选A.‎ ‎2.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.‎ 根据该折线图,下列结论错误的是 A.月接待游客量逐月增加 B.年接待游客量逐年增加 C.各年的月接待游客量高峰期大致在7,8月份 D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 A【解析】由折线图,7月份后月接待游客量减少,A错误;选A. ‎ ‎3.某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是,样本数据分组为,,,,.根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是 A.56 B.60 C.120 D.140‎ D【解析】由频率分布直方图可知,这200名学生每周的自习时间不少于22.5小时的频率为(0.16+0.08+0.04)×2.5=0.7,故这200名学生中每周的自习时间不少于22.5小时的人数为200×0.7=140.故选D.‎ ‎4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图。图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃。下面叙述不正确的是 A.各月的平均最低气温都在0℃以上 B.七月的平均温差比一月的平均温差大 C.三月和十一月的平均最高气温基本相同 D.平均气温高于20℃的月份有5个 D【解析】由图可知0℃在虚线框内,所以各月的平均最低气温都在0℃以上,A正确;由图可知七月的平均温差比一月的平均温差大,B正确;由图可知三月和十一月的平均最高气温都约为10℃,基本相同,C正确;由图可知平均最高气温高于20℃的月份不是5个,D不正确,故选D.‎ ‎5.为了研究某班学生的脚长(单位:厘米)和身高(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出与之间有线性相关关系,设其回归直线方程为.已知,,.该班某学生的脚长为24,据此估计其身高为 A. B. C. D.‎ C【解析】因为,,所以,,选C.‎ ‎6.(2018全国卷Ⅰ)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边,.的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为,,,则 A. B. C. D.‎ A【解析】通解 设直角三角形的内角,,所对的边分别为,,,则区域I的面积即的面积,为,区域Ⅱ的面积 ‎,所以,由几何概型的知识知,故选A.‎ 优解 不妨设为等腰直角三角形,,则,所以区域I的面积即的面积,为,区域Ⅱ的面积 ‎,区域Ⅲ的面积.‎ 根据几何概型的概率计算公式,得,,所以,‎ ‎,,故选A.‎ ‎7.(2018全国卷Ⅱ)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A. B. C. D.‎ C【解析】不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,从中随机选取两个不同的数有种不同的取法,这10个数中两个不同的数的和等于30的有3对,所以所求概率,故选C.‎ ‎8.如图,正方形内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A. B. C. D.‎ B【解析】设正方形的边长为,由题意可知太极图的黑色部分的面积是圆的面积的一半,根据几何概型的概率计算,所求概率为.选B.‎ ‎9.从分别标有,,,的张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是 A. B. C. D.‎ C【解析】不放回的抽取2次有,如图 可知与是不同,所以抽到的2张卡片上的数奇偶性不同有=40,所求概率为. ‎ ‎10.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 A. B. C. D.‎ B【解析】由题意得图:‎ 由图得等车时间不超过10分钟的概率为.‎ ‎11.从区间随机抽取2n个数,,…,,,,…,,构成个数对,,…,,其中两数的平方和小于1的数对共有个,则用随机模拟的方法得到的圆周率的近似值为 A. B. C. D.‎ C【解析】由题意得:在如图所示方格中,而平方和小于1的点均在如图所示的阴影中 由几何概型概率计算公式知,∴,故选C.‎ 二、填空题 ‎12.(2018江苏)‎ 已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 .‎ ‎90【解析】由茎叶图可得分数的平均数为.‎ ‎13.(2018江苏)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 .‎ ‎【解析】记2名男生分别为,,3名女生分别为,,,则从中任选2名学生有,,,,,,,,,,共10种情况,其中恰好选中2名女生有,,,共3种情况,故所求概率为.‎ ‎14.(2018上海)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示)‎ ‎【解析】从5个砝码随机取3个共有种,总质量为9克共有9=5+3+1,9=5+2+2两种情况,所以三个砝码的总质量为9克的概率是.‎ ‎15.记函数 的定义域为.在区间上随机取一个数,则 的概率是 .‎ ‎【解析】由,解得,根据几何概型的计算公式得概率为.‎ ‎16.(2016年山东)在上随机地取一个数,则事件“直线与圆相交”发生的概率为 .‎ ‎.【解析】圆的圆心为,半径,故由直线与圆相交可得,即,整理得,得.‎ 三、解答题 ‎17.(2018全国卷Ⅲ)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组 ‎20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:‎ ‎(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;‎ ‎(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过 的工人数填入下面的列联表:‎ 超过 不超过 第一种生产方式 第二种生产方式 ‎(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?‎ 附:, ‎ ‎【解析】(1)第二种生产方式的效率更高.‎ 理由如下:‎ ‎(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.‎ ‎(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.‎ ‎(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.‎ ‎(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.‎ 以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.‎ ‎(2)由茎叶图知.‎ 列联表如下:‎ 超过 不超过 第一种生产方式 ‎15‎ ‎5‎ 第二种生产方式 ‎5‎ ‎15‎ ‎(3)由于,所以有99%的把握认为两种生产方式的效率有差异.‎ ‎18.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:‎ ‎(1)设两种养殖方法的箱产量相互独立,记表示事件“旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg”,估计的概率;‎ ‎(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:‎ 箱产量50kg 箱产量50kg 旧养殖法 新养殖法 ‎(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)‎ 附:‎ ‎0.050 0.010 0.001‎ ‎3.841 6.635 10.828‎ ‎【解析】(1)记表示事件“旧养殖法的箱产量低于50kg”,表示事件“新养殖法的箱产量不低于50kg”.‎ 由题意知.‎ 旧养殖法的箱产量低于50kg的频率为 故的估计值为.新养殖法的箱产量不低于50kg的频率为 故的估计值为.‎ 因此,事件的概率估计值为.‎ ‎(2)根据箱产量的频率分布直方图得列联表 箱产量50kg 箱产量50kg 旧养殖法 ‎62‎ ‎38‎ 新养殖法 ‎34‎ ‎66‎ 由于,故有99%的把握认为箱产量与养殖方法有关.‎ ‎(3)因为新养殖法的箱产量频率分布直方图中,箱产量低于50kg的直方图面积为 ‎,‎ 箱产量低于55kg的直方图面积为,‎ 故新养殖法箱产量的中位数的估计值为.‎ ‎19.我国是世界上严重缺水的国家,某市政府为了鼓励居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准(吨)、一位居民的月用水量不超过的部分按平价收费,超出的部分按议价收费.为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5)分成9组,制成了如图所示的频率分布直方图.‎ ‎(I)求直方图中a的值;‎ ‎(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;‎ ‎(III)若该市政府希望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由.‎ ‎【解析】(I)由概率统计相关知识,各组频率之和的值为1‎ ‎∵频率=(频率/组距)*组距 ‎∴‎ 得.‎ ‎(II)由图,不低于3吨人数所占百分比为 ‎∴全市月均用水量不低于3吨的人数为:(万)‎ ‎(Ⅲ)由图可知,月均用水量小于2.5吨的居民人数所占百分比为:‎ 即的居民月均用水量小于2.5吨,‎ 同理,88%的居民月均用水量小于3吨,故 假设月均用水量平均分布,则(吨).‎ 注:本次估计默认组间是平均分布,与实际可能会产生一定误差。‎ ‎20.(2018全国卷Ⅱ)下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.‎ 为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:.‎ ‎(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;‎ ‎(2)你认为用哪个模型得到的预测值更可靠?并说明理由.‎ ‎【解析】(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为 ‎(亿元).‎ 利用模型②,该地区2018年的环境基础设施投资额的预测值为 ‎(亿元).‎ ‎(2)利用模型②得到的预测值更可靠.‎ 理由如下:‎ ‎(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线上下.这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.‎ ‎(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理.说明利用模型②得到的预测值更可靠.‎ 以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.‎ ‎21.下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图 ‎(Ⅰ)由折线图看出,可用线性回归模型拟合与的关系,请用相关系数加以说明;‎ ‎(Ⅱ)建立关于的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.‎ 附注:参考数据:,,,≈2.646.‎ 参考公式:相关系数 回归方程中斜率和截距的最小二乘估计公式分别为:‎ ‎【解析】(Ⅰ)由折线图这数据和附注中参考数据得 ‎,,,‎ ‎,‎ ‎.‎ 因为与的相关系数近似为0.99,说明与的线性相关相当高,从而可以用线性回归模型拟合与的关系.‎ ‎(Ⅱ)由及(Ⅰ)得,‎ ‎.‎ 所以,关于的回归方程为:.‎ 将2016年对应的代入回归方程得:.‎ 所以预测2016年我国生活垃圾无害化处理量将约1.82亿吨.‎ ‎22.某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:‎ 上年度出险次数 ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ 保 费 ‎0.85a a ‎1.25a ‎1.5a ‎1.75a ‎2a 设该险种一续保人一年内出险次数与相应概率如下:‎ 一年内出险次数 ‎0‎ ‎1‎ ‎2‎ ‎3‎ ‎4‎ 概 率 ‎0.30‎ ‎0.15‎ ‎0.20‎ ‎0.20‎ ‎0.10‎ ‎0.05‎ ‎(Ⅰ)求一续保人本年度的保费高于基本保费的概率;‎ ‎(Ⅱ)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出的概率;‎ ‎(Ⅲ)求续保人本年度的平均保费与基本保费的比值.‎ ‎【解析】(Ⅰ)设续保人本年度的保费高于基本保费为事件,‎ ‎.‎ ‎(Ⅱ)设续保人保费比基本保费高出为事件,‎ ‎.‎ ‎(Ⅲ)解:设本年度所交保费为随机变量.‎ 平均保费 ‎ ,‎ ‎∴平均保费与基本保费比值为.‎ ‎23.“团购”已经渗透到我们每个人的生活,这离不开快递行业的发展,下表是2013-2017年全国快递业务量(x亿件:精确到0.1)及其增长速度(y%)的数据 ‎(1)试计算2012年的快递业务量;‎ ‎(2)分别将2013年,2014年,…,2017年记成年的序号t:1,2,3,4,5;现已知y与t具有线性相关关系,试建立y关于t的回归直线方程;‎ ‎(3)根据(2)问中所建立的回归直线方程,估算2019年的快递业务量 附:回归直线的斜率和截距地最小二乘法估计公式分别为:,‎ ‎【答案】(1)(亿件)(2)(3)2019年快递业务增长量为(亿件)‎ ‎【解析】(1)设2012年的快递业务量为a,则,解得;‎ ‎(2)‎ t ‎1‎ ‎2‎ ‎3‎ ‎4‎ ‎5‎ y ‎61‎ ‎52‎ ‎48‎ ‎51‎ ‎28‎ ‎,‎ ‎(3)令,预测2018年比上半年增长,‎ ‎2018年快递业务增长量为(亿件)‎ 令,预测2019年比上半年增长,‎ ‎2019年快递业务增长量为(亿件).‎ ‎24.黄冈“一票通”景区旅游年卡,是由黄冈市旅游局策划,黄冈市大别山旅游公司推出的一项惠民工程,持有旅游年卡一年内可不限次畅游全市19家签约景区.为了解市民每年旅游消费支出情况单位:百元,相关部门对已游览某签约景区的游客进行随机问卷调查,并把得到的数据列成如表所示的频数分布表:‎ 组别 频数 ‎10‎ ‎390‎ ‎400‎ ‎188‎ ‎12‎ 求所得样本的中位数精确到百元;‎ 根据样本数据,可近似地认为市民的旅游费用支出服从正态分布,若该市总人口为750万人,试估计有多少市民每年旅游费用支出在7500元以上;‎ 若年旅游消费支出在百元以上的游客一年内会继续来该景点游玩现从游客中随机抽取3人,一年内继续来该景点游玩记2分,不来该景点游玩记1分,将上述调查所得的频率视为概率,且游客之间的选择意愿相互独立,记总得分为随机变量X,求X的分布列与数学期望.‎ 参考数据:,;‎ ‎【答案】百元;万;分布列见解析,.‎ ‎【解析】解:设样本的中位数为x,则,‎ 解得,所得样本中位数为百元;‎ ‎,,,旅游费用支出在7500元以上的概率为,,估计有万市民旅游费用支出在7500元以上;‎ 由表格知一年内游客继续来该景点游玩的概率为,X可能取值为3,4,5,6.‎ ‎,,,,‎ 故其分布列为:‎ X ‎3‎ ‎4‎ ‎5‎ ‎6‎ P ‎.‎ ‎25.人们常说的“幸福感指数”就是指某个人主观地评价他对自己目前生活状态的满意程度的指标,常用区间内的一个数来表示,该数越接近表示满意度越高.为了解某地区居民的幸福感情况,随机对该地区的男、女居民各人进行了调查,调查数据如表所示:‎ 幸福感指数 男居民人数 女居民人数 ‎(1)估算该地区居民幸福感指数的平均值;‎ ‎(2)若居民幸福感指数不小于,则认为其幸福.为了进一步了解居民的幸福满意度,调查组又在该地区随机抽取对夫妻进行调查,用表示他们之中幸福夫妻(夫妻二人都感到幸福)的对数,求的期望(以样本的频率作为总体的概率).‎ ‎【答案】(1);(2).‎ ‎【解析】‎ ‎(1)所求的平均值为; ‎ ‎(2)男居民幸福的概率为,女居民幸福的概率为,‎ 故一对夫妻都幸福的概率为,‎ 因此的可能取值为、、、、,且,‎ 因此,.‎ ‎26.某种零件的质量指标值为整数,指标值为8时称为合格品,指标值为7或者9时称为准合格品,指标值为6或10时称为废品,某单位拥有一台制造该零件的机器,为了了解机器性能,随机抽取了该机器制造的100个零件,不同的质量指标值对应的零件个数如下表所示;‎ 质量指标值 ‎6‎ ‎7‎ ‎8‎ ‎9‎ ‎10‎ 零件个数 ‎6‎ ‎18‎ ‎60‎ ‎12‎ ‎4‎ 使用该机器制造的一个零件成本为5元,合格品可以以每个元的价格出售给批发商,准合格品与废品无法岀售.‎ ‎(1)估计该机器制造零件的质量指标值的平均数;‎ ‎(2)若该单位接到一张订单,需要该零件2100个,为使此次交易获利达到1400元,估计的最小值;‎ ‎(3)该单位引进了一台加工设备,每个零件花费2元可以被加工一次,加工结果会等可能出现以下三种情况:①质量指标值增加1,②质量指标值不变,③质量指标值减少1.已知每个零件最多可被加工一次,且该单位计划将所有准合格品逐一加工,在(2)的条件下,估计的最小值(精确到0.01) .‎ ‎【答案】(1)7.9个 (2)9 (3)8.67【解析】‎ 解:(1)设机器制造零件的质量指标值的平均数为;‎ 由题意得:,‎ ‎∴机器制造零件的质量指标值的平均数为7.9个.‎ ‎(2)一个零件成本为5元,的价格出售,可得式子:‎ ‎,解得:,∴的最小值为9;‎ ‎(3)依题意得,准合格品加工后有能合格,用于销售,设为满足该订单需制作个零件,则有 ‎,解得,故要使获利达到1400元,需要 ‎,解得,∴的最小值为8.67.‎
查看更多

相关文章

您可能关注的文档