- 2021-06-10 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2020届一轮复习人教B版(文)第五章第3讲平面向量的数量积及应用举例作业
1.已知向量a=(1,),b=(3,m). 若向量a,b的夹角为,则实数m=( ) A.2 B. C.0 D.- 解析:选B.因为a·b=(1,)·(3,m)=3+m, 又a·b=××cos, 所以3+m=××cos,所以m=. 2.已知向量a,b均为单位向量,若它们的夹角是60°,则|a-3b|=( ) A.3 B.2 C. D. 解析:选D.(a-3b)2=|a|2-6a·b+9|b|2=1-6cos 60°+9=7,所以|a-3b|=,故选D. 3.设单位向量e1,e2的夹角为,a=e1+2e2,b=2e1-3e2,则b在a方向上的投影为( ) A.- B.- C. D. 解析:选A.依题意得e1·e2=1×1×cos=-, |a|===, a·b=(e1+2e2)·(2e1-3e2)=2e-6e+e1·e2= -,因此b在a方向上的投影为==-,故选A. 4.(2019·郑州质量预测)在矩形ABCD中,AB=3,BC=,=2,点F在边CD上.若·=3,则·的值为( ) A.0 B. C.-4 D.4 解析:选C.=2⇒||=||=.设与的夹角为α,·=3⇒||cos α=1⇒| |=1.以A为坐标原点建立平面直角坐标系,AD为x轴,AB为y轴,则B(0,3),F(,1),E.因此=(,-2),·=×-2×3=2-6=-4,故选C. 5.如图,AB是半圆O的直径,P是上的点,M,N是直径AB上关于O对称的两点,且AB=6,MN=4,则·等于( ) A.13 B.7 C.5 D.3 解析:选C.连接AP,BP,则=+,=+=-,所以·=(+)·(-)=·-·+·-||2=-·+·-||2=·-||2=1×6-1=5. 6.若单位向量e1,e2的夹角为,向量a=e1+λe2(λ∈R),且|a|=,则λ=________. 解析:由题意可得e1·e2=,|a|2=(e1+λe2)2=1+2λ×+λ2=,化简得λ2+λ+=0,解得λ=-. 答案:- 7.已知向量m=(λ+1,1),n=(λ+2,2),若(m+n)⊥(m-n),则向量m,n的夹角的余弦值为________. 解析:因为m+n=(2λ+3,3), m-n=(-1,-1),所以由(m+n)⊥(m-n)得(m+n)·(m-n)=0,即(2λ+3)×(-1)+3×(-1)=0,解得λ=-3,则m=(-2,1),n=(-1,2),所以cos〈m,n〉==. 答案: 8.(2017·高考天津卷)在△ABC中,∠A=60°,AB=3,AC=2.若=2,=λ-(λ∈R),且·=-4,则λ的值为________. 解析:因为=2,所以=+=+=+(-)=+,因为=λ-,所以·=·(λ-)=-2+λ2+·,因为∠A=60°,AB=3,AC=2,所以·=-×9+λ×4+×3×2×=-3+λ+λ-2=-4,解得λ=. 答案: 9.已知|a|=4,|b|=3,(2a-3b)·(2a+b)=61. (1)求a与b的夹角θ; (2)求|a+b|; (3)若=a,=b,求△ABC的面积. 解:(1)因为(2a-3b)·(2a+b)=61, 所以4|a|2-4a·b-3|b|2=61. 又|a|=4,|b|=3, 所以64-4a·b-27=61, 所以a·b=-6, 所以cos θ===-. 又0≤θ≤π,所以θ=π. (2)|a+b|2=(a+b)2=|a|2+2a·b+|b|2 =42+2×(-6)+32=13,所以|a+b|=. (3)因为与的夹角θ=π, 所以∠ABC=π-=. 又||=|a|=4,||=|b|=3, 所以S△ABC=||||·sin∠ABC=×4×3×=3. 10.在平面直角坐标系xOy中,点A(-1,-2),B(2,3),C(-2,-1). (1)求以线段AB,AC为邻边的平行四边形两条对角线的长. (2)设实数t满足(-t)·=0,求t的值. 解:(1)由题设知=(3,5),=(-1,1),则+=(2,6),-=(4,4). 所以|+|=2,|-|=4. 故所求的两条对角线的长分别为4,2. (2)由题设知:=(-2,-1),-t=(3+2t,5+t). 由(-t)·=0,得: (3+2t,5+t)·(-2,-1)=0, 从而5t=-11,所以t=-. 或者:·=t2,=(3,5), t==-. 1. (2017·高考浙江卷)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O.记I1=·,I2=·,I3=·,则( ) A.I1<I2<I3 B.I1<I3<I2 C.I3 < I1<I2 D.I2<I1<I3 解析:选C.如图所示,四边形ABCE是正方形,F为正方形的对角线的交点,易得AO查看更多