- 2021-06-10 发布 |
- 37.5 KB |
- 4页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学专题复习:课时达标检测(六十三) 坐 标 系
课时达标检测(六十三) 坐 标 系 1.在极坐标系中,已知圆C经过点P,圆心为直线ρsin=-与极轴的交点,求圆C的极坐标方程. 解:在ρsin=-中,令θ=0,得ρ=1,所以圆C的圆心坐标为(1,0). 因为圆C经过点P, 所以圆C的半径PC= =1,于是圆C过极点,所以圆C的极坐标方程为ρ=2cos θ. 2.设M,N分别是曲线ρ+2sin θ=0和ρsin=上的动点,求M,N的最小距离. 解:因为M,N分别是曲线ρ+2sin θ=0和ρsin=上的动点,即M,N分别是圆x2+y2+2y=0和直线x+y-1=0上的动点,要求M,N两点间的最小距离,即在直线x+y-1=0上找一点到圆x2+y2+2y=0的距离最小,即圆心(0,-1)到直线x+y-1=0的距离减去半径,故最小值为-1=-1. 3.在极坐标系中,求直线ρ(cos θ-sin θ)=2与圆ρ=4sin θ的交点的极坐标. 解:ρ(cos θ-sin θ)=2化为直角坐标方程为x-y=2,即y=x-2. ρ=4sin θ可化为x2+y2=4y, 把y=x-2代入x2+y2=4y, 得4x2-8x+12=0,即x2-2x+3=0, 所以x=,y=1. 所以直线与圆的交点坐标为(,1),化为极坐标为. 4.(2017·山西质检)在极坐标系中,曲线C的方程为ρ2=,点R. (1)以极点为原点,极轴为x轴的正半轴,建立平面直角坐标系,把曲线C的极坐标方程化为直角坐标方程,R点的极坐标化为直角坐标; (2)设P为曲线C上一动点,以PR为对角线的矩形PQRS的一边垂直于极轴,求矩形 PQRS周长的最小值,及此时P点的直角坐标. 解:(1)曲线C:ρ2=,即ρ2+2ρ2sin2θ=3,从而+ρ2sin2θ=1. ∵x=ρcos θ,y=ρsin θ, ∴曲线C的直角坐标方程为+y2=1, 点R的直角坐标为R(2,2). (2)设P(cos θ,sin θ), 根据题意可得|PQ|=2-cos θ,|QR|=2-sin θ, ∴|PQ|+|QR|=4-2sin, 当θ=时,|PQ|+|QR|取最小值2, ∴矩形PQRS周长的最小值为4, 此时点P的直角坐标为. 5.(2017·南京模拟)已知直线l:ρsin=4和圆C:ρ=2kcos(k≠0),若直线l上的点到圆C上的点的最小距离等于2.求实数k的值并求圆心C的直角坐标. 解:圆C的极坐标方程可化为ρ=kcos θ-ksin θ, 即ρ2=kρcos θ-kρsin θ, 所以圆C的直角坐标方程为x2+y2-kx+ky=0, 即2+2=k2, 所以圆心C的直角坐标为. 直线l的极坐标方程可化为ρsin θ·-ρcos θ·=4, 所以直线l的直角坐标方程为x-y+4=0, 所以-|k|=2. 即|k+4|=2+|k|, 两边平方,得|k|=2k+3, 所以或 解得k=-1,故圆心C的直角坐标为. 6.已知圆C:x2+y2=4,直线l:x+y=2.以O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系. (1)将圆C和直线l方程化为极坐标方程; (2)P是l上的点,射线OP交圆C于点R,又点Q在OP上,且满足|OQ|·|OP|=|OR|2,当点P在l上移动时,求点Q轨迹的极坐标方程. 解:(1)将x=ρcos θ,y=ρsin θ分别代入圆C和直线l的直角坐标方程得其极坐标方程为C:ρ=2,l:ρ(cos θ+sin θ)=2. (2)设P,Q,R的极坐标分别为(ρ1,θ),(ρ,θ),(ρ2,θ),则由|OQ|·|OP|=|OR|2,得ρρ1=ρ. 又ρ2=2,ρ1=,所以=4, 故点Q轨迹的极坐标方程为ρ=2(cos θ+sin θ)(ρ≠0). 7.(2017·贵州联考)已知在一个极坐标系中点C的极坐标为. (1)求出以C为圆心,半径长为2的圆的极坐标方程(写出解题过程); (2)在直角坐标系中,以圆C所在极坐标系的极点为原点,极轴为x轴的正半轴建立直角坐标系,点P是圆C上任意一点,Q(5,-),M是线段PQ的中点,当点P在圆C上运动时,求点M的轨迹的普通方程. 解:(1)如图,设圆C上任意一点A(ρ,θ),则∠AOC=θ-或-θ. 由余弦定理得,4+ρ2-4ρcosθ-=4, 所以圆C的极坐标方程为ρ=4cos. (2)在直角坐标系中,点C的坐标为(1,),可设圆C上任意一点P(1+2cos α,+2sin α), 又令M(x,y),由Q(5,-),M是线段PQ的中点, 得点M的轨迹的参数方程为(α为参数), 即(α为参数), ∴点M的轨迹的普通方程为(x-3)2+y2=1. 8.在平面直角坐标系中,曲线C1的参数方程为(φ为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,射线θ=与曲线C2交于点 D. (1)求曲线C1的普通方程和曲线C2的直角坐标方程; (2)已知极坐标系中两点A(ρ1,θ0),B,若A,B都在曲线C1上,求+的值. 解:(1)∵C1的参数方程为 ∴C1的普通方程为+y2=1. 由题意知曲线C2的极坐标方程为ρ=2acos θ(a为半径), 将D 代入,得2=2a×, ∴a=2,∴圆C2的圆心的直角坐标为(2,0),半径为2, ∴C2的直角坐标方程为(x-2)2+y2=4. (2)曲线C1的极坐标方程为+ρ2sin2θ=1, 即ρ2=. ∴ρ=, ρ= =. ∴+=+=.查看更多