高考全国卷Ⅱ文数试题解析精编版

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高考全国卷Ⅱ文数试题解析精编版

绝密★启用前 ‎2018年普通高等学校招生全国统一考试 文科数学 注意事项:‎ ‎1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。‎ ‎2.作答时,将答案写在答题卡上。写在本试卷及草稿纸上无效。‎ ‎3.考试结束后,将本试卷和答题卡一并交回。‎ 一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。‎ ‎1. ‎ A. B. C. D. ‎ ‎【答案】D ‎【解析】分析:根据公式,可直接计算得 详解: ,故选D.‎ 点睛:复数题是每年高考的必考内容,一般以选择或填空形式出现,属简单得分题,高考中复数主要考查的内容有:复数的分类、复数的几何意义、共轭复数,复数的模及复数的乘除运算,在解决此类问题时,注意避免忽略中的负号导致出错.‎ ‎2. 已知集合,,则 A. B. C. D. ‎ ‎【答案】C ‎【解析】分析:根据集合可直接求解.‎ 详解:,‎ ‎,‎ 故选C 点睛:集合题也是每年高考的必考内容,一般以客观题形式出现,一般解决此类问题时要先将参与运算的集合化为最简形式,如果是“离散型”集合可采用Venn图法解决,若是“连续型”集合则可借助不等式进行运算.‎ ‎3. 函数的图像大致为 A. A B. B C. C D. D ‎【答案】B ‎【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.‎ 详解:为奇函数,舍去A,‎ 舍去D;‎ ‎,‎ 所以舍去C;因此选B.‎ 点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复. ‎ ‎4. 已知向量,满足,,则 A. 4 B. 3 C. 2 D. 0‎ ‎【答案】B ‎【解析】分析:根据向量模的性质以及向量乘法得结果.‎ 详解:因为 所以选B.‎ 点睛:向量加减乘: ‎ ‎5. 从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A. B. C. D. ‎ ‎【答案】D ‎【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.‎ 详解:设2名男同学为,3名女同学为,‎ 从以上5名同学中任选2人总共有共10种可能,‎ 选中的2人都是女同学的情况共有共三种可能 则选中的2人都是女同学的概率为,‎ 故选D.‎ 点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.‎ ‎6. 双曲线的离心率为,则其渐近线方程为 A. B. C. D. ‎ ‎【答案】A ‎【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.‎ 详解:‎ 因为渐近线方程为,所以渐近线方程为,选A.‎ 点睛:已知双曲线方程求渐近线方程:.‎ ‎7. 在中,,,,则 A. B. C. D. ‎ ‎【答案】A ‎【解析】分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.‎ 详解:因为 所以,选A.‎ 点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.‎ ‎8. 为计算,设计了右侧的程序框图,则在空白框中应填入 A. ‎ B. ‎ C. ‎ D. ‎ ‎【答案】B ‎【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项.‎ 详解:由得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入,选B.‎ 点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.‎ ‎9. 在正方体中,为棱的中点,则异面直线与所成角的正切值为 A. B. C. D. ‎ ‎【答案】C ‎【解析】分析:利用正方体中,,将问题转化为求共面直线与所成角的正切值,在中进行计算即可.‎ 详解:在正方体中,,‎ 所以异面直线与所成角为,‎ 设正方体边长为,‎ 则由为棱的中点,可得,‎ 所以 则.‎ 故选C.‎ 点睛:求异面直线所成角主要有以下两种方法:‎ ‎(1)几何法:①平移两直线中的一条或两条,到一个平面中;②利用边角关系,找到(或构造)所求角所在的三角形;③求出三边或三边比例关系,用余弦定理求角.‎ ‎(2)向量法:①求两直线的方向向量;②求两向量夹角的余弦;③因为直线夹角为锐角,所以②对应的余弦取绝对值即为直线所成角的余弦值.‎ ‎10. 若在是减函数,则的最大值是 A. B. C. D. ‎ ‎【答案】C ‎【解析】分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值 详解:因为,‎ 所以由得 因此,从而的最大值为,选A.‎ 点睛:函数的性质: ‎ ‎(1). (2)周期 (3)由 求对称轴, (4)由求增区间; ‎ 由求减区间.‎ ‎11. 已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为 A. B. C. D. ‎ ‎【答案】D ‎【解析】分析:设,则根据平面几何知识可求,再结合椭圆定义可求离心率.‎ 详解:在中,‎ 设,则,‎ 又由椭圆定义可知 则离心率,‎ 故选D.‎ 点睛:椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义.‎ ‎12. 已知是定义域为的奇函数,满足.若,则 ‎ A. B. 0 C. 2 D. 50‎ ‎【答案】C ‎【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.‎ 详解:因为是定义域为的奇函数,且,‎ 所以,‎ 因此,‎ 因为,所以,‎ ‎,从而,选C.‎ 点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.‎ 二、填空题:本题共4小题,每小题5分,共20分。、‎ ‎13. 曲线在点处的切线方程为__________.‎ ‎【答案】y=2x–2‎ ‎【解析】分析:求导,可得斜率,进而得出切线的点斜式方程.‎ 详解:由,得 则曲线在点处的切线的斜率为,‎ 则所求切线方程为,即.‎ 点睛:求曲线在某点处的切线方程的步骤:①求出函数在该点处的导数值即为切线斜率;②写出切线的点斜式方程;③化简整理.‎ ‎14. 若满足约束条件 则的最大值为__________.‎ ‎【答案】9‎ ‎【解析】分析:作出可行域,根据目标函数的几何意义可知当时,.‎ 学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...学&科&网...‎ 点睛:线性规划问题是高考中常考考点,主要以选择及填空的形式出现,基本题型为给出约束条件求目标函数的最值,主要结合方式有:截距型、斜率型、距离型等.‎ ‎15. 已知,则__________.‎ ‎【答案】‎ ‎【解析】分析:利用两角差的正切公式展开,解方程可得.‎ 详解:,‎ 解方程得.‎ 点睛:本题主要考查学生对于两角和差公式的掌握情况,属于简单题型,解决此类问题的核心是要公式记忆准确,特殊角的三角函数值运算准确.‎ ‎16. 已知圆锥的顶点为,母线,互相垂直,与圆锥底面所成角为,若的面积为,则该圆锥的体积为__________.‎ ‎【答案】8π ‎【解析】分析:作出示意图,根据条件分别求出圆锥的母线,高,底面圆半径的长,代入公式计算即可.‎ 详解:如下图所示,‎ 又,‎ 解得,所以,‎ 所以该圆锥的体积为.‎ 点睛:此题为填空题的压轴题,实际上并不难,关键在于根据题意作出相应图形,利用平面几何知识求解相应线段长,代入圆锥体积公式即可.‎ 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23为选考题。考生根据要求作答。学#科网 ‎(一)必考题:共60分。‎ ‎17. 记为等差数列的前项和,已知,.‎ ‎ (1)求的通项公式;‎ ‎ (2)求,并求的最小值.‎ ‎【答案】解:‎ ‎(1)设{an}的公差为d,由题意得3a1+3d=–15.‎ 由a1=–7得d=2.‎ 所以{an}的通项公式为an=2n–9.‎ ‎(2)由(1)得Sn=n2–8n=(n–4)2–16.‎ 所以当n=4时,Sn取得最小值,最小值为–16.‎ ‎【解析】分析:(1)根据等差数列前n项和公式,求出公差,再代入等差数列通项公式得结果,(2)根据等差数列前n项和公式得的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.‎ 详解:(1)设{an}的公差为d,由题意得3a1+3d=–15.‎ 由a1=–7得d=2.‎ 所以{an}的通项公式为an=2n–9.‎ ‎(2)由(1)得Sn=n2–8n=(n–4)2–16.‎ 所以当n=4时,Sn取得最小值,最小值为–16.‎ 点睛:数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.‎ ‎18. 下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.‎ ‎ 为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:.‎ ‎ (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;‎ ‎ (2)你认为用哪个模型得到的预测值更可靠?并说明理由.‎ ‎【答案】解:‎ ‎(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为 ‎ =–30.4+13.5×19=226.1(亿元).‎ 利用模型②,该地区2018年的环境基础设施投资额的预测值为 ‎=99+17.5×9=256.5(亿元).‎ ‎(2)利用模型②得到的预测值更可靠.‎ 理由如下:‎ ‎(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.‎ ‎(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.‎ 以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.‎ ‎【解析】分析:(1)两个回归直线方程中无参数,所以分别求自变量为2018时所对应的函数值,就得结果,(2)根据折线图知2000到2009,与2010到2016是两个有明显区别的直线,且2010到2016的增幅明显高于2000到2009,也高于模型1的增幅,因此所以用模型2更能较好得到2018的预测.‎ 详解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为 ‎ =–30.4+13.5×19=226.1(亿元).‎ 利用模型②,该地区2018年的环境基础设施投资额的预测值为 ‎=99+17.5×9=256.5(亿元).‎ ‎(2)利用模型②得到的预测值更可靠.‎ 理由如下:‎ ‎(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016‎ 年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.‎ ‎(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.‎ 以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.‎ 点睛:若已知回归直线方程,则可以直接将数值代入求得特定要求下的预测值;若回归直线方程有待定参数,则根据回归直线方程恒过点求参数.‎ ‎19. 如图,在三棱锥中,,,为的中点.‎ ‎ (1)证明:平面;‎ ‎ (2)若点在棱上,且,求点到平面的距离.‎ ‎【答案】解:‎ ‎(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=.‎ 连结OB.因为AB=BC=,所以△ABC为等腰直角三角形,且OB⊥AC,OB==2.‎ 由知,OP⊥OB.‎ 由OP⊥OB,OP⊥AC知PO⊥平面ABC.‎ ‎(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.‎ 故CH的长为点C到平面POM的距离.‎ 由题设可知OC==2,CM==,∠ACB=45°.‎ 所以OM=,CH==.‎ 所以点C到平面POM的距离为.‎ ‎【解析】分析:(1)连接,欲证平面,只需证明即可;(2)过点作,垂足为,只需论证的长即为所求,再利用平面几何知识求解即可.‎ 详解:(1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=.‎ 连结OB.因为AB=BC=,所以△ABC为等腰直角三角形,且OB⊥AC,OB==2.‎ 由知,OP⊥OB.‎ 由OP⊥OB,OP⊥AC知PO⊥平面ABC.‎ ‎(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.‎ 故CH的长为点C到平面POM的距离.‎ 由题设可知OC==2,CM==,∠ACB=45°.‎ 所以OM=,CH==.‎ 所以点C到平面POM的距离为.‎ 点睛:立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明;本题第二问可以通过作出点到平面的距离线段求解,也可利用等体积法解决.‎ ‎20. 设抛物线的焦点为,过且斜率为的直线与交于,两点,.‎ ‎ (1)求的方程;‎ ‎ (2)求过点,且与的准线相切的圆的方程.‎ ‎【答案】解:‎ ‎(1)由题意得F(1,0),l的方程为y=k(x–1)(k>0).‎ 设A(x1,y1),B(x2,y2).‎ 由得.‎ ‎ ,故.‎ 所以.‎ 由题设知,解得k=–1(舍去),k=1.‎ 因此l的方程为y=x–1.‎ ‎(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为 ‎,即.‎ 设所求圆的圆心坐标为(x0,y0),则 解得或 因此所求圆的方程为 或.‎ 详解:(1)由题意得F(1,0),l的方程为y=k(x–1)(k>0).‎ 设A(x1,y1),B(x2,y2).‎ 由得.‎ ‎ ,故.‎ 所以.‎ 由题设知,解得k=–1(舍去),k=1.‎ 因此l的方程为y=x–1.‎ ‎(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为 ‎,即.‎ 设所求圆的圆心坐标为(x0,y0),则 解得或 因此所求圆的方程为 或.‎ 点睛:确定圆的方程方法 ‎(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.‎ ‎(2)待定系数法 ‎①若已知条件与圆心和半径有关,则设圆的标准方程依据已知条件列出关于的方程组,从而求出的值;‎ ‎②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D、E、F的方程组,进而求出D、E、F的值.‎ ‎21. 已知函数.‎ ‎ (1)若,求的单调区间;‎ ‎ (2)证明:只有一个零点.‎ ‎【答案】解:‎ ‎(1)当a=3时,f(x)=,f ′(x)=.‎ 令f ′(x)=0解得x=或x=.‎ 当x∈(–∞,)∪(,+∞)时,f ′(x)>0;‎ 当x∈(,)时,f ′(x)<0.‎ 故f(x)在(–∞,),(,+∞)单调递增,在(,)单调递减.‎ ‎(2)由于,所以等价于.‎ 设=,则g ′(x)=≥0,仅当x=0时g ′(x)=0,所以g(x)在(–∞,+∞)单调递增.故g(x)至多有一个零点,从而f(x)至多有一个零点.‎ 又f(3a–1)=,f(3a+1)=,故f(x)有一个零点.‎ 综上,f(x)只有一个零点.‎ ‎【解析】分析:(1)将代入,求导得,令求得增区间,令求得减区间;(2)令,即,则将问题转化为函数只有一个零点问题,研究函数单调性可得.‎ 详解:(1)当a=3时,f(x)=,f ′(x)=.‎ 令f ′(x)=0解得x=或x=.‎ 当x∈(–∞,)∪(,+∞)时,f ′(x)>0;‎ 当x∈(,)时,f ′(x)<0.‎ 故f(x)在(–∞,),(,+∞)单调递增,在(,)单调递减.‎ ‎(2)由于,所以等价于.‎ 设=,则g ′(x)=≥0,仅当x=0时g ′(x)=0,所以g(x)在(–∞,+‎ ‎∞)单调递增.故g(x)至多有一个零点,从而f(x)至多有一个零点.‎ 又f(3a–1)=,f(3a+1)=,故f(x)有一个零点.‎ 综上,f(x)只有一个零点.‎ 点睛:(1)用导数求函数单调区间的步骤如下:①确定函数的定义域;②求导数;③由(或)解出相应的的取值范围,当时,在相应区间上是增函数;当时,在相应区间上是减增函数.‎ ‎(2)本题第二问重在考查零点存在性问题,解题的关键在于将问题转化为求证函数有唯一零点,可先证明其单调,再结合零点存在性定理进行论证.‎ ‎(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。‎ ‎22. [选修4-4:坐标系与参数方程]‎ ‎ 在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).‎ ‎ (1)求和的直角坐标方程;学科%网 ‎ (2)若曲线截直线所得线段的中点坐标为,求的斜率.‎ ‎【答案】解:‎ ‎(1)曲线的直角坐标方程为.‎ 当时,的直角坐标方程为,‎ 当时,的直角坐标方程为.‎ ‎(2)将的参数方程代入的直角坐标方程,整理得关于的方程 ‎.①‎ 因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.‎ 又由①得,故,于是直线的斜率.‎ ‎【解析】分析:(1)根据同角三角函数关系将曲线的参数方程化为直角坐标方程,根据代入消元法将直线的参数方程化为直角坐标方程,此时要注意分 与两种情况.(2)将直线参数方程代入曲线的直角坐标方程,根据参数几何意义得之间关系,求得,即得的斜率.‎ 详解:(1)曲线的直角坐标方程为.‎ 当时,的直角坐标方程为,‎ 当时,的直角坐标方程为.‎ ‎(2)将的参数方程代入的直角坐标方程,整理得关于的方程 ‎.①‎ 因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.‎ 又由①得,故,于是直线的斜率.‎ 点睛:直线的参数方程的标准形式的应用 过点M0(x0,y0),倾斜角为α的直线l的参数方程是.(t是参数,t可正、可负、可为0)‎ 若M1,M2是l上的两点,其对应参数分别为t1,t2,则 ‎(1)M1,M2两点的坐标分别是(x0+t1cos α,y0+t1sin α),(x0+t2cos α,y0+t2sin α).‎ ‎(2)|M1M2|=|t1-t2|.‎ ‎(3)若线段M1M2的中点M所对应的参数为t,则t=,中点M到定点M0的距离|MM0|=|t|=.‎ ‎(4)若M0为线段M1M2的中点,则t1+t2=0.‎ ‎23. [选修4-5:不等式选讲]‎ ‎ 设函数.‎ ‎ (1)当时,求不等式的解集;‎ ‎ (2)若,求的取值范围.‎ ‎【答案】解:‎ ‎(1)当时,‎ 可得的解集为.‎ ‎(2)等价于.‎ 而,且当时等号成立.故等价于.‎ 由可得或,所以的取值范围是.‎ ‎【解析】分析:(1)先根据绝对值几何意义将不等式化为三个不等式组,分别求解,最后求并集,(2)先化简不等式为,再根据绝对值三角不等式得最小值,最后解不等式得的取值范围.‎ 详解:(1)当时,‎ 可得的解集为.‎ ‎(2)等价于.‎ 而,且当时等号成立.故等价于.‎ 由可得或,所以的取值范围是.‎ 点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.‎ ‎ ‎
查看更多

相关文章

您可能关注的文档