- 2021-05-14 发布 |
- 37.5 KB |
- 24页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高中高考数学解析几何单元易错题练习及答案解析
高中高考数学解析几何单元易错题练习及答案解析 一.考试内容: 椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程. 双曲线及其标准方程.双曲线的简单几何性质. 抛物线及其标准方程.抛物线的简单几何性质. 二.考试要求: (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质. (4)了解圆锥曲线的初步应用. 【注意】圆锥曲线是解析几何的重点,也是高中数学的重点内容,高考中主要出现三种类型的试题:①考查圆锥曲线的概念与性质;②求曲线方程和轨迹;③关于直线与圆锥曲线的位置关系的问题. 三.基础知识: (一)椭圆及其标准方程 1. 椭圆的定义:椭圆的定义中,平面内动点与两定点、的距离的和大于||这个条件不可忽视.若这个距离之和小于||,则这样的点不存在;若距离之和等于||,则动点的轨迹是线段. 2.椭圆的标准方程:(>>0),(>>0). 3.椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果项的分母大于项的分母,则椭圆的焦点在x轴上,反之,焦点在y轴上. 4.求椭圆的标准方程的方法:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解. (二)椭圆的简单几何性质 1. 椭圆的几何性质:设椭圆方程为(>>0). ⑴ 范围: -a≤x≤a,-b≤x≤b,所以椭圆位于直线x=和y=所围成的矩形里. ⑵ 对称性:分别关于x轴、y轴成轴对称,关于原点中心对称.椭圆的对称中心叫做椭圆的中心. ⑶ 顶点:有四个(-a,0)、(a,0)(0,-b)、(0,b). 线段、分别叫做椭圆的长轴和短轴.它们的长分别等于2a和2b,a和b分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点. ⑷ 离心率:椭圆的焦距与长轴长的比叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e<1.e越接近于1时,椭圆越扁;反之,e越接近于0时,椭圆就越接近于圆. 2.椭圆的第二定义 ⑴ 定义:平面内动点M与一个顶点的距离和它到一条定直线的距离的比是常数(e<1=时,这个动点的轨迹是椭圆. ⑵ 准线:根据椭圆的对称性,(>>0)的准线有两条,它们的方程为.对于椭圆(> >0)的准线方程,只要把x换成y就可以了,即. 3.椭圆的焦半径:由椭圆上任意一点与其焦点所连的线段叫做这点的焦半径. 设(-c,0),(c,0)分别为椭圆(>>0)的左、右两焦点,M(x,y)是椭圆上任一点,则两条焦半径长分别为,. 椭圆中涉及焦半径时运用焦半径知识解题往往比较简便. 椭圆的四个主要元素a、b、c、e中有=+、两个关系,因此确定椭圆的标准方程只需两个独立条件. 4.椭圆的参数方程 椭圆(>>0)的参数方程为(θ为参数). 说明 ⑴ 这里参数θ叫做椭圆的离心角.椭圆上点P的离心角θ与直线OP的倾斜角α不同:; ⑵ 椭圆的参数方程可以由方程与三角恒等式相比较而得到,所以椭圆的参数方程的实质是三角代换. 92.椭圆的参数方程是. 5.椭圆的的内外部 (1)点在椭圆的内部. (2)点在椭圆的外部. 6. 椭圆的切线方程 (1)椭圆上一点处的切线方程是. (2)过椭圆外一点所引两条切线的切点弦方程是. (3)椭圆与直线相切的条件是 (三)双曲线及其标准方程 1. 双曲线的定义:平面内与两个定点、的距离的差的绝对值等于常数2a(小于||)的动点的轨迹叫做双曲线.在这个定义中,要注意条件2a<||,这一条件可以用“三角形的两边之差小于第三边”加以理解.若2a=||,则动点的轨迹是两条射线;若2a>||,则无轨迹. 若<时,动点的轨迹仅为双曲线的一个分支,又若> 时,轨迹为双曲线的另一支.而双曲线是由两个分支组成的,故在定义中应为“差的绝对值”. 1. 双曲线的标准方程:和(a>0,b>0).这里,其中||=2c.要注意这里的a、b、c及它们之间的关系与椭圆中的异同. 3.双曲线的标准方程判别方法是:如果项的系数是正数,则焦点在x轴上;如果项的系数是正数,则焦点在y轴上.对于双曲线,a不一定大于b,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上. 4.求双曲线的标准方程,应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解. (四)双曲线的简单几何性质 1.双曲线的实轴长为2a,虚轴长为2b,离心率>1,离心率e越大,双曲线的开口越大. 2. 双曲线的渐近线方程为或表示为.若已知双曲线的渐近线方程是,即,那么双曲线的方程具有以下形式:,其中k是一个不为零的常数. 3.双曲线的第二定义:平面内到定点(焦点)与到定直线(准线)距离的比是一个大于1的常数(离心率)的点的轨迹叫做双曲线.对于双曲线,它的焦点坐标是(-c,0)和(c,0),与它们对应的准线方程分别是和.双曲线的焦半径公式 ,. 4.双曲线的内外部 (1)点在双曲线的内部. (2)点在双曲线的外部. 5.双曲线的方程与渐近线方程的关系 (1)若双曲线方程为渐近线方程:. (2)若渐近线方程为双曲线可设为. (3)若双曲线与有公共渐近线,可设为(,焦点在x轴上,,焦点在y轴上). 6. 双曲线的切线方程 (1)双曲线上一点处的切线方程是. (2)过双曲线外一点所引两条切线的切点弦方程是. (3)双曲线与直线相切的条件是. (五)抛物线的标准方程和几何性质 1.抛物线的定义:平面内到一定点(F)和一条定直线(l)的距离相等的点的轨迹叫抛物线。这个定点F叫抛物线的焦点,这条定直线l叫抛物线的准线。 需强调的是,点F不在直线l上,否则轨迹是过点F且与l垂直的直线,而不是抛物线。 2.抛物线的方程有四种类型: 、、、. 对于以上四种方程:应注意掌握它们的规律:曲线的对称轴是哪个轴,方程中的该项即为一次项;一次项前面是正号则曲线的开口方向向x轴或y轴的正方向;一次项前面是负号则曲线的开口方向向x轴或y轴的负方向。 3.抛物线的几何性质,以标准方程y2=2px为例 (1)范围:x≥0; (2)对称轴:对称轴为y=0,由方程和图像均可以看出; (3)顶点:O(0,0),注:抛物线亦叫无心圆锥曲线(因为无中心); (4)离心率:e=1,由于e是常数,所以抛物线的形状变化是由方程中的p决定的; (5)准线方程; (6)焦半径公式:抛物线上一点P(x1,y1),F为抛物线的焦点,对于四种抛物线的焦半径公式分别为(p>0): (7)焦点弦长公式:对于过抛物线焦点的弦长,可以用焦半径公式推导出弦长公式。设过抛物线y2=2px(p>O)的焦点F的弦为AB,A(x1,y1),B(x2,y2),AB的倾斜角为α,则有①|AB|=x+x+p 以上两公式只适合过焦点的弦长的求法,对于其它的弦,只能用“弦长公式”来求。 (8)直线与抛物线的关系:直线与抛物线方程联立之后得到一元二次方程:x+bx+c=0,当a≠0时,两者的位置关系的判定和椭圆、双曲线相同,用判别式法即可;但如果a=0,则直线是抛物线的对称轴或是和对称轴平行的直线,此时,直线和抛物线相交,但只有一个公共点。 4.抛物线上的动点可设为P或 P,其中 . 5.二次函数的图象是抛物线: (1)顶点坐标为;(2)焦点的坐标为;(3)准线方程是. 6.抛物线的内外部 (1)点在抛物线的内部. 点在抛物线的外部. (2)点在抛物线的内部. 点在抛物线的外部. (3)点在抛物线的内部. 点在抛物线的外部. (4) 点在抛物线的内部. 点在抛物线的外部. 7. 抛物线的切线方程 (1)抛物线上一点处的切线方程是. (2)过抛物线外一点所引两条切线的切点弦方程是.(3)抛物线与直线相切的条件是. (六).两个常见的曲线系方程 (1)过曲线,的交点的曲线系方程是 (为参数). (2)共焦点的有心圆锥曲线系方程,其中.当时,表示椭圆; 当时,表示双曲线. (七)直线与圆锥曲线相交的弦长公式 或 (弦端点A,由方程 消去y得到,,为直线的倾斜角,为直线的斜率). (八).圆锥曲线的两类对称问题 (1)曲线关于点成中心对称的曲线是. (2)曲线关于直线成轴对称的曲线是 . 四.基本方法和数学思想 1.椭圆焦半径公式:设P(x0,y0)为椭圆(a>b>0)上任一点,焦点为F1(-c,0),F2(c,0),则(e为离心率); 2.双曲线焦半径公式:设P(x0,y0)为双曲线 (a>0,b>0)上任一点,焦点为F1(-c,0),F2(c,0),则: (1)当P点在右支上时,; (2)当P点在左支上时,;(e为离心率); 另:双曲线(a>0,b>0)的渐进线方程为; 3.抛物线焦半径公式:设P(x0,y0)为抛物线y2=2px(p>0)上任意一点,F为焦点,则;y2=2px(p<0)上任意一点,F为焦点,; 4.涉及圆锥曲线的问题勿忘用定义解题; 5.共渐进线的双曲线标准方程为为参数,≠0); 6.计算焦点弦长可利用上面的焦半径公式, 一般地,若斜率为k的直线被圆锥曲线所截得的弦为AB, A、B两点分别为A(x1,y1)、B(x2,y2),则弦长 ,这里体现了解析几何“设而不求”的解题思想; 7.椭圆、双曲线的通径(最短弦)为,焦准距为p=,抛物线的通径为2p,焦准距为p; 双曲线(a>0,b>0)的焦点到渐进线的距离为b; 8.中心在原点,坐标轴为对称轴的椭圆,双曲线方程可设为Ax2+Bx2=1; 9.抛物线y2=2px(p>0)的焦点弦(过焦点的弦)为AB,A(x1,y1)、B(x2,y2),则有如下结论:(1)=x1+x2+p;(2)y1y2=-p2,x1x2=; 10.过椭圆(a>b>0)左焦点的焦点弦为AB,则,过右焦点的弦; 11.对于y2=2px(p≠0)抛物线上的点的坐标可设为(,y0),以简化计算; 12.处理椭圆、双曲线、抛物线的弦中点问题常用代点相减法,设A(x1,y1)、B(x2,y2)为椭圆(a>b>0)上不同的两点,M(x0,y0)是AB的中点,则KABKOM=;对于双曲线(a>0,b>0),类似可得:KAB.KOM=;对于y2=2px(p≠0)抛物线有KAB= 13.求轨迹的常用方法: (1)直接法:直接通过建立x、y之间的关系,构成F(x,y)=0,是求轨迹的最基本的方法; (2)待定系数法:所求曲线是所学过的曲线:如直线,圆锥曲线等,可先根据条件列出所求曲线的方程,再由条件确定其待定系数,代回所列的方程即可; (3)代入法(相关点法或转移法):若动点P(x,y)依赖于另一动点Q(x1,y1)的变化而变化,并且Q(x1,y1)又在某已知曲线上,则可先用x、y的代数式表示x1、y1,再将x1、y1带入已知曲线得要求的轨迹方程; (4)定义法:如果能够确定动点的轨迹满足某已知曲线的定义,则可由曲线的定义直接写出方程; (5)参数法:当动点P(x,y)坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x、y均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程。 例题1 求过点(2,1)且与两坐标所围成的三角形面积为4的直线方程。 错解:设所求直线方程为。 ∵(2,1)在直线上,∴, ① 又,即ab = 8 , ② 由①、②得a = 4,b = 2。故所求直线方程为x + 2 y = 4 。 剖析:本题的“陷阱”是直线与两坐标轴所围成的三角形面积的表示。上述解法中,由于对截距概念模糊不清,误将直线在x轴和y轴上的截距作距离使用而掉入“陷阱”。 事实上,直线与两坐标轴所围成的三角形面积为,而不是ab。 故所求直线方程应为: x + 2 y = 4,或(+1)x - 2(-1)y – 4 = 0,或(- 1)x - 2(+1)y +4 = 0。 例题2 已知三角形的三个顶点为A(6,3),B(9,3),C(3,6),求A。 错解:∵ kAB = 0 ,k AC = = -1,∴ tanA===1. 又0<A<1800,∴ A=450。 剖析:本题的“陷阱”是公式的选取,上述解法中把“到角”与“夹角”的概念混为一谈,错误地选用了夹角公式。 事实上,所求角应是直线AB到AC(注意:不是AC到AB)的角。 因此,∴ tanA== - 1,A=1350。 例题3 求过点A(-4,2)且与x轴的交点到(1,0)的距离是5的直线方程。 错解:设直线斜率为k,其方程为y – 2 = k(x + 4),则与x轴的交点为(-4-,0), ∴,解得k = -。故所求直线的方程为x + 5y – 6 = 0 。 剖析:题中仅考虑了斜率存在的情况,忽视了斜率不存在的情况,即经过A且垂直于x轴的直线,落入“陷阱”。其实x = - 4也符合题意。 例题4 求过点(1,1)且横、纵截距相等的直线方程。 错解:设所求方程为,将(1,1)代入得a = 2, 从而得所求直线方程为x + y – 2 = 0。 剖析:上述错解所设方程为,其中不含横、纵截距为0的特殊情形,事实上,横、纵截距为0且过点(1,1)的直线y = x 也符合条件。 例题5 已知圆的方程为x2 + y2 + ax + 2y + a2 = 0 ,一定点为A(1,2),要使过A点作圆的切线有两条,求a的取值范围。 错解:将圆的方程配方得: ( x + )2 + ( y + 1 )2 = 。 ∵其圆心坐标为C(-,-1),半径r =。 当点A在圆外时,过点A可作圆的两条切线,则 > r 。 即 >。即a2 + a + 9 > 0,解得a∈R。 剖析:本题的“陷阱”是方程x2 + y2 + ax + 2y + a 2= 0表示圆的充要条件,上述解法仅由条件得出 > r ,即a2 + a + 9 > 0,却忽视了a的另一制约条件4 – 3 a2 > 0。 事实上,由a2 + a + 9 > 0及4 – 3 a2 > 0可得a的取值范围是()。 例题6 已知直线L:y = x + b与曲线C:y =有两个公共点,求实线b的取值范围。 错解:由消去x得:2y2 - 2by + b2 – 1 = 0。 ( * ) ∵ L与曲线C有两个公共点, ∴ = 4b2 – 8 ( b2 -1 ) > 0,解得-<b< 剖析:上述解法忽视了方程y =中y ≥ 0 ,- 1 ≤ x ≤ 1这一限制条件,得出了错误的结论。 事实上,曲线C和直线L有两个公共点等价于方程(*)有两个不等的非负实根。 解得1≤ b ≤。 例题7 等腰三角形顶点是A(4,2),底边的一个端点是B(3,5),求另一个端点C的轨迹方程。 错解:设另一个端点的坐标为( x ,y ),依题意有: =,即:= ∴ (x - 4)2 + (y - 2) 2 = 10即为C点的轨迹方程。 这是以A(4,2)为圆心、以为半径的圆。 剖析:因为A、B、C三点为三角形三个顶点,所以A、B、C三点不共线,即B、C不能重合,且不能为圆A一直径的两个端点,这正是解题后没有对轨迹进行检验,出现增解,造成的解题错误。 事实上,C点的坐标须满足,且, 故端点C的轨迹方程应为(x - 4)2 + ( y-2 )2 = 10 ( x3,y5;x5,y-1)。 它表示以(4,2)为圆心,以为半径的圆,除去(3,5)(5,-1)两点。 例题8 求z = 3 x + 5 y的最大值和最小值,使式中的x ,y满足约束条件: 错解:作出可行域如图1所示,过原点作直线L0:3 x + 5 y = 0 。 由于经过B点且与L0平行的直线与原点的距离最近, 故z = 3 x + 5 y在B点取得最小值。解方程组,得B点坐标为(3,0),∴ z最小=33+50=9。 由于经过A点且与L0平行的直线与原点的距离最大, 故z = 3x + 5y在A点取得最大值。 解方程组,得A点坐标为(,)。 ∴ z最大=3+5= 17 。 剖析:上述解法中,受课本例题的影响,误认为在对过原点的直线L0的平行移动中,与原点距离最大的直线所经过的可行域上的点,即为目标函数Z取得最大值的点。反之,即为Z取得最小值的点,并把这一认识移到不同情况中加以应用,由此造成了解题失误。 事实上,过原点作直线L0:3x + 5y = 0,由于使z = 3x + 5y > 0的区域为直线L0的 右上方,而使z = 3x + 5y < 0的区域为L0的 左下方。由图知:z = 3x + 5y应在A点取得最大值,在C点取得最小值。 解方程组,得C(-2,-1)。 ∴ z最小=3(-2)+5(-1)= -11。 例题9 已知正方形ABCD 对角线AC所在直线方程为 .抛物线过B,D两点 (1)若正方形中心M为(2,2)时,求点N(b,c)的轨迹方程。 (2)求证方程的两实根,满足 解答:(1)设 因为 B,D在抛物线上 所以两式相减得 则代入(1) 得 故点的方程是一条射线。 (2)设 同上 (1)-(2)得 (1)+(2)得 (3)代入(4)消去得 得 又即的两根满足 故。 易错原因:审题不清,忽略所求轨迹方程的范围。 例题10 已知双曲线两焦点,其中为的焦点,两点A (-3,2) B (1,2)都在双曲线上,(1)求点的坐标;(2)求点的轨迹方程,并画出轨迹的草图;(3)若直线与的轨迹方程有且只有一个公共点,求实数 t的取值范围。 解答:(1)由得:,故 (2)设点,则又双曲线的定义得 又 或 点的轨迹是以为焦点的椭圆 除去点或除去点 图略。 (3)联列:消去得 整理得: 当时 得 从图可知:, 又因为轨迹除去点 所以当直线过点时也只有一个交点,即或5 易错原因:(1)非标准方程求焦点坐标时计算易错;(2)求点的轨迹时易少一种情况;(3)对有且仅有一个交点误认为方程只有一解。 例题11 已知圆,圆都内切于动圆,试求动圆圆心的轨迹方程。 错解:圆O2:,即为 所以圆O2的圆心为,半径, 而圆的圆心为,半径, 设所求动圆圆心M的坐标为(x,y),半径为r 则且,所以 即,化简得 即为所求动圆圆心的轨迹方程。 剖析:上述解法将=3看成,误认为动圆圆心的轨迹为双曲线,这是双曲线的概念不清所致。 事实上,|表示动点M到定点及的距离差为一常数3。 且,点M的轨迹为双曲线右支,方程为 例题12 点P与定点F(2,0)的距离和它到直线x=8的距离比是1:3,求动点P与定点距离的最值。 错解:设动点P(x,y)到直线x=8的距离为d,则 即 两边平方、整理得=1 (1) 由此式可得: 因为 所以 剖析 由上述解题过程知,动点P(x,y) 在一椭圆上,由椭圆性质知,椭圆上点的横纵坐标都是有限制的,上述错解在于忽视了这一取值范围,由以上解题过程知,的最值可由二次函数在区间上的单调性给予解决 即:当时, 例题13 已知双曲线的离心率e=, 过点A()和B(a,0)的直线与原点的距离为,直线y=kx+m与该双曲线交于不同两点C、D,且C、D两点都在以A为圆心的同一圆上,求m 的取值范围。 错解 由已知,有 解之得: 所以双曲线方程为 把直线 y=kx+m代入双曲线方程,并整理得: 所以(1) 设CD中点为,则APCD,且易知: 所以 (2) 将(2)式代入(1)式得 解得m>4或 故所求m的范围是 剖析 上述错解,在于在减元过程中,忽视了元素之间的制约关系, 将代入(1) 式时,m受k的制约。 因为 所以故所求m的范围应为m>4或 例题14 椭圆中心是坐标原点,长轴在x轴上,离心率,已知点P( )到椭圆上的点最远距离是,求这个椭圆的方程。 错解 设所求椭圆方程为 因为,所以a=2b 于是椭圆方程为 设椭圆上点M(x,y)到点P 的距离为d, 则: 所以当时,有 所以所求椭圆方程为 剖析 由椭圆方程得 由(1)式知是y的二次函数,其对称轴为 上述错解在于没有就对称轴在区间内或外进行分类, 其正解应对f(y)=的最值情况进行讨论: (1)当,即时 =7,方程为 (2)当, 即时, ,与矛盾。 综上所述,所求椭圆方程为 例题15 已知双曲线,问过点A(1,1)能否作直线,使与双曲线交于P、Q 两点,并且A为线段PQ的中点?若存在,求出直线的方程,若不存在,说明理由。 错解 设符合题意的直线存在,并设、 则 (1)得 因为A(1,1)为线段PQ的中点,所以 将(4)、(5)代入(3)得 若,则直线的斜率 所以符合题设条件的直线存在。其方程为 剖析 在(3)式成立的前提下,由(4)、(5)两式可推出(6)式,但由(6)式不能推出(4)(5)两式,故应对所求直线进行检验,上述错解没有做到这一点,故是错误的。 应在上述解题的基础上,再由 得 根据,说明所求直线不存在。 例题16 已知椭圆,F为它的右焦点,直线过原点交椭圆C于A、B两点。求是否存在最大值或最小值?若不存在,说明理由。 错解 设A、B两点坐标分别为、 因为, 所以, 又椭圆中心为(1,0),右准线方程为x=5, 所以 即,同理 所以 设直线的方程为y=kx,代入椭圆方程得 所以 代入(1)式得 所以,所以|有最小值3,无最大值。 剖析 上述错解过程忽视了过原点斜率不存在的直线,当的斜率不存在时, 有 所以有最小值为 3,最大值为25/4 课后练习题 1、圆x2 + 2x + y2 + 4y –3 = 0上到直线x + y + 1 = 0的距离等于的点共有( ) A、1个 B、 2个 C、 3个 D、 4个 分析:这里直线和圆相交,很多同学受思维定势的影响,错误地认为圆在此直线的两侧各有两点到直线的距离为,导致错选( D )。 事实上,已知圆的方程为: (x +1)2 + (y+2) 2 = 8,这是一个 以(-1,-2)为圆心,以2为 半径的圆,圆的圆心到直线 x + y + 1 = 0的距离 为d==, 这样只需画出(x +1)2 + (y+2) 2 = 8 和直线x + y + 1 = 0以及和x + y + 1 = 0的距离为的平行直线即可。 如图2所示,图中三个点A、B、C为所求,故应选(C)。 2、过定点(1,2)作两直线与圆相切,则k的取值范围是 A k>2 B -3查看更多