2019年高考数学(文)原创终极押题卷(新课标Ⅰ卷)(考试版)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2019年高考数学(文)原创终极押题卷(新课标Ⅰ卷)(考试版)

‎ ‎ 秘密★启用前 ‎2019年普通高等学校统一招生考试终极押题卷(全国新课标Ⅰ)‎ 文科数学 ‎(考试时间:120分钟 试卷满分:150分)‎ 第Ⅰ卷 一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)‎ ‎1. 设,,,则下列结论中正确的是(  )‎ A. B. ‎ C. D.‎ ‎2. 已知为虚数单位, 设复数,则在复平面内对应的点位于( )‎ A.第一象限 B.第二象限 C.第三象限 D.第四象限 ‎3. 是衡量空气质量的重要指标,我国采用世卫组织的最宽值限定值,即日均值在/以下空气质量为一级,在/空气量为二级,超过/为超标.如图是某地‎5月1日至10日的(单位:/)的日均值折线图,则下列说法不正确的是( )‎ A. 这天中有天空气质量为一级 B. 从日到日日均值逐渐降低 C. 这天中日均值的中位数是 D. 这天中日均值最高的是5月日 ‎4. 已知均为正实数,且,则的最小值为( )‎ A. B.‎ C. D.‎ ‎5.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,‎ 则该几何体的体积为( )‎ ‎[:]‎ A. B. ‎ C. D.‎ ‎6.下列函数中同时具有性质:“①最小正周期是,②图象关于对称,③在上是增函数”的函数是( )‎ A. B. ‎ C. D. ‎ ‎7. 执行下面的程序框图,如果输入,,则输出的( )‎ A.7 B.20‎ C.22 D.54‎ ‎8. 已知函数是定义在上的偶函数,且在上单调递增,则( )‎ 数学试题 第5页(共6页) 数学试题 第6页(共6页)‎ ‎ ‎ A. B.‎ C. D.‎ ‎9. 2018年平昌冬季奥运会于‎2月9日~‎2月25日举行,为了解奥运会五环所占面积与单独五个环面积和的比例,某学生设计了如下的计算机模拟,通过计算机模拟长为8,宽为5的长方形内随机取了N个点,经统计落入五环及其内部的点数为,圆环半径为1,如图,则比值的近似值为( )‎ ‎[:.]‎ A. B. C. D. ‎10.在中,角、、的对边分别为、、,若,,,则的值为( )‎ A. B. ‎ C. D.‎ ‎11.设,是双曲线的两个焦点,是上一点,若,且的最小内角为,则的离心率为( )‎ A. B. ‎ C. D.‎ ‎12. 某人5次上班图中所花的时间(单位:分钟)分别为,已知这组数据的平均数为10,方差为2,则=( )‎ A. B.‎ C. D.‎ 第Ⅱ卷 二、填空题(本题共4小题,每小题5分,共20分)‎ ‎13. 已知向量,,满足,且,则______________.‎ ‎14.若实数满足,则的最大值为______________.‎ ‎15. 已知函数,则关于的不等式的解集为______________.‎ ‎16.某工厂现将一棱长为的四面体毛坯件,切割成一个圆柱体零件,则该圆柱体体积的最大值为______________.‎ 三、解答题(共70分.解答应写出必要的文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答,第22、23题为选考题,考生根据要求作答。)‎ ‎(一)必考题:共60分。‎ ‎17.(本小题满分12分)‎ 已知数列是等差数列,,,数列的前项和为,且. ‎ ‎(Ⅰ)求数列、的通项公式;‎ ‎(Ⅱ)记,求数列的前项和为.‎ ‎18.(本小题满分12分)‎ 正方体的棱长为1,是边的中点,点在正方体内部或正方体的面上,且满足:面。‎ ‎(Ⅰ)求动点的轨迹在正方体内形成的平面区域的面积;‎ ‎(Ⅱ)设直线与动点的轨迹所在平面所成的角记为,求.‎ ‎19.(本小题满分12分)‎ 数学试题 第5页(共6页) 数学试题 第6页(共6页)‎ ‎ ‎ 进入高三,同学们的学习越来越紧张,学生休息和锻炼的时间也减少了,学校为了提高学生的学习效率,鼓励学生加强体育锻炼.某中学高三(3)班有学生50人.现调查该班学生每周平均体育锻炼时间的情况,得到如下频率分布直方图.其中数据的分组区间为: ‎ ‎(Ⅰ)求学生周平均体育锻炼时间的中位数(保留3位有效数字);‎ ‎(Ⅱ)从每周平均体育锻炼时间在 的学生中,随机抽取2人进行调查,求此2人的每周平均体育锻炼时间都超过2小时的概率;‎ ‎(Ⅲ)现全班学生中有40%是女生,其中3个女生的每周平均体育锻炼时间不超过4小时.若每周平均体育锻炼时间超过4小时称为经常锻炼,问:有没有90%的把握说明,经常锻炼与否与性别有关?‎ 附: ‎ P(K2≥k0)‎ ‎0.100‎ ‎0.050‎ ‎0.010‎ ‎0.001‎ k0‎ ‎2.706‎ ‎3.841‎ ‎6.635‎ ‎10.828‎ ‎20.(本小题满分12分)‎ 已知椭圆的左、右焦点分别为,过点且垂直于轴的直线截椭圆形成的弦长为,且椭圆的离心率为,过点的直线与椭圆交于两点.‎ ‎(Ⅰ)求椭圆的标准方程;‎ ‎(Ⅱ)若点,且,则当取得最小值时,求直线的方程.‎ ‎21.(本小题满分12分)‎ 已知函数有两个不同的零点 ‎(Ⅰ)求的取值范围;‎ ‎(Ⅱ)设是的两个零点,证明:‎ ‎(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。‎ ‎[选修4-4:坐标系与参数方程](10分)‎ ‎22.(本小题满分10分)‎ 在平面直角坐标系中,曲线的参数方程为(,为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线经过点,曲线的极坐标方程为.‎ ‎(Ⅰ)求曲线的极坐标方程;‎ ‎(Ⅱ)若,是曲线上两点,求的值.‎ ‎[选修4-5:不等式选讲](10分)‎ ‎23. (本小题满分10分)‎ 已知函数.‎ ‎(Ⅰ)解不等式:;‎ ‎(Ⅱ)若关于x的不等式在上无解,求实数的取值范围.‎ 数学试题 第5页(共6页) 数学试题 第6页(共6页)‎
查看更多

相关文章

您可能关注的文档