高考数学试题分类汇编10——数列

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高考数学试题分类汇编10——数列

十、数列 一、选择题 ‎1.(天津理4)已知为等差数列,其公差为-2,且是与的等比中项,为 的前项和,,则的值为 ‎ A.-110    B.-90    ‎ ‎ C.90   D.110‎ ‎【答案】D ‎2.(四川理8)数列的首项为,为等差数列且.若则,,则 ‎ A.0 B.‎3 ‎ C.8 D.11‎ ‎【答案】B ‎【解析】由已知知由叠加法 ‎3.(四川理11)已知定义在上的函数满足,当时,.设在上的最大值为,且的前项和为,则 ‎ A.3 B. C.2 D.‎ ‎【答案】D ‎【解析】由题意,在上,‎ ‎4.(上海理18)设是各项为正数的无穷数列,是边长为的矩形面积(),则为等比数列的充要条件为 ‎ A.是等比数列。 ‎ ‎ B.或是等比数列。‎ ‎ C.和均是等比数列。‎ ‎ D.和均是等比数列,且公比相同。‎ ‎【答案】D ‎5.(全国大纲理4)设为等差数列的前项和,若,公差,,则 ‎ A.8 B.‎7 ‎ C.6 D.5‎ ‎【答案】D ‎6.(江西理5) 已知数列{}的前n项和满足:,且=1.那么=‎ ‎ A.1 B.‎9 ‎ C.10 D.55‎ ‎【答案】A ‎7.(福建理10)已知函数f(x)=e+x,对于曲线y=f(x)上横坐标成等差数列的三个点A,B,C,给出以下判断:‎ ‎ ①△ABC一定是钝角三角形 ‎ ‎ ②△ABC可能是直角三角形 ‎ ③△ABC可能是等腰三角形 ‎ ‎ ④△ABC不可能是等腰三角形 ‎ 其中,正确的判断是 ‎ A.①③ B.①④ C. ②③ D.②④‎ ‎【答案】B 二、填空题 ‎8.(湖南理12)设是等差数列,的前项和,且,‎ 则= .‎ ‎【答案】25‎ ‎9.(重庆理11)在等差数列中,,则__________‎ ‎【答案】74‎ ‎10.(北京理11)在等比数列{an}中,a1=,a4=-4,则公比q=______________;____________。—2 ‎ ‎【答案】‎ ‎11.(安徽理14)已知的一个内角为120o,并且三边长构成公差为4的 ‎ 等差数列,则的面积为_______________.‎ ‎【答案】‎ ‎12.(湖北理13)《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共为‎3升,下面3节的容积共‎4升,则第5节的容积为 升。‎ ‎【答案】‎ ‎13.(广东理11)等差数列前9项的和等于前4项的和.若,则k=____________.‎ ‎【答案】10‎ ‎14.(江苏13)设,其中成公比为q的等比数列,成公差为1的等差数列,则q的最小值是________‎ ‎【答案】‎ 三、解答题 ‎15.(江苏20)设M部分为正整数组成的集合,数列,前n项和为,已知对任意整数kM,当整数都成立 ‎ (1)设的值;‎ ‎ (2)设的通项公式 本小题考查数列的通项与前项和的关系、等差数列的基本性质等基础知识,考查考生分析探究及逻辑推理的能力,满分16分。‎ ‎ 解:(1)由题设知,当,‎ ‎ 即,‎ ‎ 从而 ‎ 所以的值为8。‎ ‎ (2)由题设知,当 ‎ ,‎ ‎ 两式相减得 ‎ 所以当成等差数列,且也成等差数 列 ‎ 从而当时, (*)‎ ‎ 且,‎ ‎ 即成等差数列,‎ ‎ 从而,‎ ‎ 故由(*)式知 ‎ 当时,设 ‎ 当,从而由(*)式知 ‎ 故 ‎ 从而,于是 ‎ 因此,对任意都成立,又由可知,‎ ‎ 解得 ‎ 因此,数列为等差数列,由 ‎ 所以数列的通项公式为 ‎16.(安徽理18)‎ 在数1和100之间插入个实数,使得这个数构成递增的等比数列,将这个数的乘积记作,再令.‎ ‎(Ⅰ)求数列的通项公式;‎ ‎(Ⅱ)设求数列的前项和.‎ 本题考查等比和等差数列,指数和对数的运算,两角差的正切公式等基本知识,考查灵活运用知识解决问题的能力,综合运算能力和创新思维能力.‎ ‎ 解:(I)设构成等比数列,其中则 ‎ ①‎ ‎ ②‎ ‎ ①×②并利用 ‎ ‎ ‎ (II)由题意和(I)中计算结果,知 ‎ 另一方面,利用 ‎ 得 ‎ 所以 ‎ ‎ ‎17.(北京理20)‎ ‎ 若数列满足,数列为数列,记=.‎ ‎ (Ⅰ)写出一个满足,且〉0的数列;‎ ‎ (Ⅱ)若,n=2000,证明:E数列是递增数列的充要条件是=2011;‎ ‎ (Ⅲ)对任意给定的整数n(n≥2),是否存在首项为0的E数列,使得=0?如果存在,写出一个满足条件的E数列;如果不存在,说明理由。‎ ‎ ‎ 解:(Ⅰ)0,1,2,1,0是一具满足条件的E数列A5。‎ ‎(答案不唯一,0,1,0,1,0也是一个满足条件的E的数列A5)‎ ‎(Ⅱ)必要性:因为E数列A5是递增数列,‎ 所以.‎ 所以A5是首项为12,公差为1的等差数列.‎ 所以a2000=12+(2000—1)×1=2011.‎ 充分性,由于a2000—a1000≤1,‎ a2000—a1000≤1‎ ‎……‎ a2—a1≤1‎ ‎ 所以a2000—a≤19999,即a2000≤a1+1999.‎ ‎ 又因为a1=12,a2000=2011,‎ ‎ 所以a2000=a1+1999.‎ ‎ 故是递增数列.‎ ‎ 综上,结论得证。‎ ‎ (Ⅲ)令 ‎ 因为 ‎ ……‎ ‎ ‎ 所以 因为 所以为偶数,‎ 所以要使为偶数,‎ 即4整除.‎ 当 时,有 当的项满足,‎ 当不能被4整除,此时不存在E数列An,‎ 使得 ‎18.(福建理16) ‎ 已知等比数列{an}的公比q=3,前3项和S3=。‎ ‎(I)求数列{an}的通项公式;‎ ‎(II)若函数在处取得最大值,且最大值为a3,求函数f(x)的解析式。‎ 本小题主要考查等比数列、三角函数等基础知识,考查运算求解能力,考查函数与方程思想,满分13分。‎ ‎ 解:(I)由 解得 所以 ‎(II)由(I)可知 因为函数的最大值为3,所以A=3。‎ 因为当时取得最大值,‎ 所以 又 所以函数的解析式为 ‎19.(广东理20) ‎ ‎ 设b>0,数列满足a1=b,.‎ ‎(1)求数列的通项公式;‎ ‎(2)证明:对于一切正整数n,‎ 解:‎ ‎ (1)由 ‎ 令,‎ ‎ 当 ‎ ‎ ‎ ‎ ‎ ①当时,‎ ‎ ‎ ‎ ②当 ‎ ‎ ‎ (2)当时,(欲证)‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ,‎ ‎ ‎ ‎ 当 ‎ 综上所述 ‎20.(湖北理19)‎ 已知数列的前项和为,且满足:,N*,.‎ ‎(Ⅰ)求数列的通项公式;‎ ‎(Ⅱ)若存在N*,使得,,成等差数列,是判断:对于任意的N*,且,,,是否成等差数列,并证明你的结论.‎ 本小题主要考查等差数列、等比数列等基础知识,同时考查推理论证能力,以及特殊与一般的思想。(满分13分)‎ ‎ 解:(I)由已知可得,两式相减可得 ‎ ‎ ‎ 即 ‎ 又所以r=0时,‎ ‎ 数列为:a,0,…,0,…;‎ ‎ 当时,由已知(),‎ ‎ 于是由可得,‎ ‎ 成等比数列,‎ ‎ ,‎ ‎ 综上,数列的通项公式为 ‎ (II)对于任意的,且成等差数列,证明如下:‎ ‎ 当r=0时,由(I)知,‎ ‎ 对于任意的,且成等差数列,‎ ‎ 当,时,‎ ‎ ‎ ‎ 若存在,使得成等差数列,‎ ‎ 则,‎ ‎ ‎ ‎ 由(I)知,的公比,于是 ‎ 对于任意的,且 ‎ 成等差数列,‎ ‎ 综上,对于任意的,且成等差数列。‎ ‎21.(辽宁理17) ‎ 已知等差数列{an}满足a2=0,a6+a8=-10‎ ‎(I)求数列{an}的通项公式;‎ ‎(II)求数列的前n项和.‎ 解:‎ ‎ (I)设等差数列的公差为d,由已知条件可得 解得 故数列的通项公式为 ………………5分 ‎ (II)设数列,即,‎ 所以,当时,‎ ‎ ‎ 所以 ‎ 综上,数列 ………………12分 ‎22.(全国大纲理20) ‎ 设数列满足且 ‎(Ⅰ)求的通项公式;‎ ‎(Ⅱ)设 解:‎ ‎ (I)由题设 ‎ 即是公差为1的等差数列。‎ ‎ 又 ‎ 所以 ‎ (II)由(I)得 ‎ , …………8分 ‎ …………12分 ‎23.(全国新课标理17) ‎ 已知等比数列的各项均为正数,且.‎ ‎(I)求数列的通项公式.‎ ‎(II)设,求数列的前n项和.‎ 解:‎ ‎(Ⅰ)设数列{an}的公比为q,由得所以.‎ 由条件可知c>0,故.‎ 由得,所以.‎ 故数列{an}的通项式为an=.‎ ‎(Ⅱ )‎ 故 所以数列的前n项和为 ‎24.(山东理20) ‎ 等比数列中,分别是下表第一、二、三行中的某一个数,且中的任何两个数不在下表的同一列.‎ 第一列 第二列 第三列 第一行 ‎3‎ ‎2‎ ‎10‎ 第二行 ‎6‎ ‎4‎ ‎14‎ 第三行 ‎9‎ ‎8‎ ‎18‎ ‎(Ⅰ)求数列的通项公式;‎ ‎(Ⅱ)若数列满足:,求数列的前n项和.‎ 解:(I)当时,不合题意;‎ 当时,当且仅当时,符合题意;‎ 当时,不合题意。‎ 因此 所以公式q=3,‎ 故 ‎ (II)因为 所以 ‎ 所以 当n为偶数时,‎ 当n为奇数时,‎ 综上所述,‎ ‎25.(上海理22) 已知数列和的通项公式分别为,(),将集合 中的元素从小到大依次排列,构成数列 ‎。‎ ‎(1)求;‎ ‎(2)求证:在数列中.但不在数列中的项恰为;‎ ‎(3)求数列的通项公式。‎ 解:⑴ ;‎ ‎⑵ ① 任意,设,则,即 ‎② 假设(矛盾),∴ ‎ ‎∴ 在数列中.但不在数列中的项恰为。‎ ‎⑶ ,‎ ‎,,‎ ‎∵ ‎ ‎∴ 当时,依次有,……‎ ‎∴ 。‎ ‎26.(四川理20) ‎ ‎ 设为非零实数,‎ ‎(1)写出并判断是否为等比数列。若是,给出证明;若不是,说明理由;‎ ‎(II)设,求数列的前n项和.‎ 解析:(1)‎ 因为为常数,所以是以为首项,为公比的等比数列。‎ ‎(2)‎ ‎(2)(1)‎ ‎27.(天津理20) ‎ 已知数列与满足:, ,且 ‎.‎ ‎(Ⅰ)求的值;‎ ‎(Ⅱ)设,证明:是等比数列;‎ ‎(III)设证明:.‎ 本小题主要考查等比数列的定义、数列求和等基础知识,考查运算能力、推理论证能力、综合分析和解决问题的能力及分类讨论的思想方法.满分14分.‎ ‎ (I)解:由 ‎ 可得 又 ‎(II)证明:对任意 ‎ ①‎ ‎ ②‎ ‎ ③‎ ‎②—③,得 ④‎ 将④代入①,可得 即 又 因此是等比数列.‎ ‎(III)证明:由(II)可得,‎ 于是,对任意,有 将以上各式相加,得 即,‎ 此式当k=1时也成立.由④式得 从而 所以,对任意,‎ 对于n=1,不等式显然成立.‎ 所以,对任意 ‎28.(浙江理19)已知公差不为0的等差数列的首项为a(),设数列的前n项和为,且,,成等比数列 ‎(1)求数列的通项公式及 ‎(2)记,,当时,试比较与的大小.‎ 本题主要考查等差数列、等比数列、求和公式、不等式等基础知识,同时考查分类讨论思想。满分14分。‎ ‎ (I)解:设等差数列的公差为d,由 得 因为,所以所以 ‎(II)解:因为,所以 因为,所以 当,‎ 即 所以,当 当 ‎29.(重庆理21) ‎ 设实数数列的前n项和,满足 ‎ (I)若成等比数列,求和;‎ ‎ (II)求证:对 ‎ ‎ ‎ (I)解:由题意,‎ 由S2是等比中项知 由解得 ‎ (II)证法一:由题设条件有 故 从而对有 ‎ ①‎ 因,由①得 要证,由①只要证 即证 此式明显成立.‎ 因此 最后证若不然 又因矛盾.‎ 因此 证法二:由题设知,‎ 故方程(可能相同).‎ 因此判别式 又由 因此,‎ 解得 因此 由,得 因此
查看更多

相关文章

您可能关注的文档