2017年高考理科数学试题及答案(全国1卷)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2017年高考理科数学试题及答案(全国1卷)

安徽省 2017 年高考理科数学试题及答案(Word 版) (考试时间:120 分钟 试卷满分:150 分) 一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符 合题目要求的。 1.已知集合 A={x|x<1},B={x| },则 A. B. C. D. 2.如图,正方形 ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于 正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A. B. C. D. 3.设有下面四个命题 :若复数 满足 ,则 ; :若复数 满足 ,则 ; :若复数 满足 ,则 ; :若复数 ,则 . 其中的真命题为 A. B. C. D. 4.记 为等差数列 的前 项和.若 , ,则 的公差为 A.1 B.2 C.4 D.8 5.函数 在 单调递减,且为奇函数.若 ,则满足 的 的 取值范围是 A. B. C. D. 3 1x < { | 0}A B x x= < A B = R { | 1}A B x x= > A B = ∅ 1 4 π 8 1 2 π 4 1p z 1 z ∈R z ∈R 2p z 2z ∈R z ∈R 3p 1 2,z z 1 2z z ∈R 1 2z z= 4p z ∈R z ∈R 1 3,p p 1 4,p p 2 3,p p 2 4,p p nS { }na n 4 5 24a a+ = 6 48S = { }na ( )f x ( , )−∞ +∞ ( 11)f = − 21 ( ) 1xf −− ≤ ≤ x [ 2,2]− [ 1,1]− [0,4] [1,3] 6. 展开式中 的系数为 A.15 B.20 C.30 D.35 7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的 边长为 2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之 和为 A.10 B.12 C.14 D.16 8. 右面程序框图是为了求出满足 3n−2n>1000 的最小偶数 n, 那么在 和 两个空白框中,可以分别填入 A.A>1 000 和 n=n+1 B.A>1 000 和 n=n+2 C.A 1 000 和 n=n+1 D.A 1 000 和 n=n+2 9.已知曲线 C1:y=cos x,C2:y=sin (2x+ ),则下面结论正确的是 A.把 C1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移 个单位长 度,得到曲线 C2 B.把 C1 上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向左平移 个单位长 度,得到曲线 C2 C.把 C1 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向右平移 个单位长 度,得到曲线 C2 D.把 C1 上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向左平移 个单 6 2 1(1 )(1 )xx + + 2x ≤ ≤ 2π 3 6 π π 12 1 2 π 6 1 2 π 12 位长度,得到曲线 C2 10.已知 F 为抛物线 C:y2=4x 的焦点,过 F 作两条互相垂直的直线 l1,l2,直线 l1 与 C 交于 A、B 两点,直线 l2 与 C 交于 D、E 两点,则|AB|+|DE|的最小值为 A.16 B.14 C.12 D.10 11.设 xyz 为正数,且 ,则 A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 12.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出 了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列 1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是 20,接下来的两项是 20, 21,再接下来的三项是 20,21,22,依此类推.求满足如下条件的最小整数N:N>100 且该数列的前 N 项和为 2 的整数幂.那么该款软件的激活码是 A.440 B.330 C.220 D.110 二、填空题:本题共 4 小题,每小题 5 分,共 20 分。 13.已知向量 a,b 的夹角为 60°,|a|=2,|b|=1,则| a +2 b |= . 14.设 x,y 满足约束条件 ,则 z=3x-2y 的最小值为 . 15.已知双曲线 C: (a>0,b>0)的右顶点为 A,以 A 为圆心,b 为半径做圆 A,圆 A 与 双曲线 C 的一条渐近线交于 M、N 两点。若∠MAN=60°,则 C 的离心率为________。 16.如图,圆形纸片的圆心为 O,半径为 5 cm,该纸片上的等边三角形 ABC 的中心为 O。D、E、F 为圆 O 上的点,△DBC,△ECA,△FAB 分别是以 BC,CA,AB 为底边的等腰三角形。沿虚线剪开后,分别以 BC,CA,AB 为 折痕折起△DBC,△ECA,△FAB,使得 D、E、F 重合,得到三棱锥。当 △ABC 的边长变化时,所得三棱锥体积(单位:cm3)的最大值为 _______。 三、解答题:共 70 分。解答应写出文字说明、证明过程或演算步骤。第 17~21 题为必考题,每个试 题考生都必须作答。第 22、23 题为选考题,考生根据要求作答。 (一)必考题:共 60 分。 17.(12 分) △ABC 的内角 A,B,C 的对边分别为 a,b,c,已知△ABC 的面积为 2 3 5x y z= = 2 3sin a A (1)求 sinBsinC; (2)若 6cosBcosC=1,a=3,求△ABC 的周长. 18.(12 分) 如图,在四棱锥 P-ABCD 中,AB//CD, 且 . (1)证明:平面 PAB⊥平面 PAD; (2)若 PA=PD=AB=DC,∠APD=90°, 求二面角 A-PB-C 的余弦值. 19.(12 分) 为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取 16 个零件, 并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺 寸服从正态分布 . (1)假设生产状态正常,记 X 表示一天内抽取的 16 个零件中其尺寸在 之外 的零件数,求 及 的数学期望; (2)一天内抽检零件中,如果出现了尺寸在 之外的零件,就认为这条生产线 在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查. (ⅰ)试说明上述监控生产过程方法的合理性; (ⅱ)下面是检验员在一天内抽取的 16 个零件的尺寸: 9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95 经计算得 , ,其中 为抽取的第 个零件的尺寸, . 用样本平均数 作为 的估计值 ,用样本标准差 作为 的估计值 ,利用估计值判断是否 需对当天的生产过程进行检查?剔除 之外的数据,用剩下的数据估计 和 (精 确到 0.01). 附:若随机变量 服从正态分布 ,则 , , . 20.(12 分) 已知椭圆 C: (a>b>0),四点 P1(1,1),P2(0,1),P3(–1, ),P4(1, ) 中恰有三点在椭圆 C 上. 90BAP CDP∠ = ∠ =  2( , )N µ σ ( 3 , 3 )µ σ µ σ− + ( 1)P X ≥ X ( 3 , 3 )µ σ µ σ− + 16 1 1 9.9716 i i x x = = =∑ 16 16 2 2 2 2 1 1 1 1( ) ( 16 ) 0.21216 16i i i i s x x x x = = = − = − ≈∑ ∑ ix i 1,2, ,16i = ⋅⋅⋅ x µ ˆµ s σ ˆσ ˆ ˆ ˆ ˆ( 3 , 3 )µ σ µ σ− + µ σ Z 2( , )N µ σ ( 3 3 ) 0.997 4P Zµ σ µ σ− < < + = 160.997 4 0.959 2= 0.008 0.09≈ 2 2 2 2 =1x y a b + 3 2 3 2 (1)求 C 的方程; (2)设直线 l 不经过 P2 点且与 C 相交于 A,B 两点.若直线 P2A 与直线 P2B 的斜率的和为–1,证 明:l 过定点. 21.(12 分) 已知函数 ae2x+(a﹣2) ex﹣x. (1)讨论 的单调性; (2)若 有两个零点,求 a 的取值范围. (二)选考题:共 10 分。请考生在第 22、23 题中任选一题作答。如果多做,则按所做的第一题计 分。 22.[选修 4―4:坐标系与参数方程](10 分) 在直角坐标系 xOy 中,曲线 C 的参数方程为 (θ 为参数),直线 l 的参数方程为 . (1)若 a=−1,求 C 与 l 的交点坐标; (2)若 C 上的点到 l 的距离的最大值为 ,求 a. 23.[选修 4—5:不等式选讲](10 分) 已知函数 f(x)=–x2+ax+4,g(x)=│x+1│+│x–1│. (1)当 a=1 时,求不等式 f(x)≥g(x)的解集; (2)若不等式 f(x)≥g(x)的解集包含[–1,1],求 a 的取值范围. )f x =( ( )f x ( )f x 3cos , sin , x y θ θ =  = 4 , 1 , x a t ty t = +  = − ( 为参数) 17 参考答案 选择题 1.A 2.B 3.B 4.C 5.D 6.C 7.B 8.D 9.D 10.A 11.D 12.A 填空题 13.3 14.-5 15.2 16.4 解答题 3 15
查看更多

相关文章

您可能关注的文档