2017高考真题解答题专项训练概率与统计理科学生版

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2017高考真题解答题专项训练概率与统计理科学生版

‎2017------2018年高考真题解答题专项训练:概率与统计(理科)学生版 ‎1.已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.‎ ‎(I)应从甲、乙、丙三个部门的员工中分别抽取多少人?‎ ‎(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.‎ ‎(i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;‎ ‎(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.‎ ‎2.电影公司随机收集了电影的有关数据,经分类整理得到下表:‎ 电影类型 第一类 第二类 第三类 第四类 第五类 第六类 电影部数 ‎140‎ ‎50‎ ‎300‎ ‎200‎ ‎800‎ ‎510‎ 好评率 ‎0.4‎ ‎0.2‎ ‎0.15‎ ‎0.25‎ ‎0.2‎ ‎0.1‎ 好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.‎ 假设所有电影是否获得好评相互独立.‎ ‎(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;‎ ‎(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;‎ ‎(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“ξk‎=1‎”表示第k类电影得到人们喜欢,“ξk‎=0‎”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差Dξ‎1‎,Dξ‎2‎,Dξ‎3‎,Dξ‎4‎,Dξ‎5‎,Dξ‎6‎的大小关系.‎ ‎3.某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:‎ ‎(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;‎ ‎(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:‎ 超过m 不超过m 第一种生产方式 第二种生产方式 ‎(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?‎ 附:K‎2‎‎=‎nad−bc‎2‎a+bc+da+cb+d, ‎ ‎4.下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.‎ ‎ 为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为‎1, 2, ⋯, 17‎)建立模型①:y‎=-30.4+13.5t;根据2010年至2016年的数据(时间变量t的值依次为‎1, 2, ⋯, 7‎)建立模型②:y‎=99+17.5t.‎ ‎ (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;‎ ‎ (2)你认为用哪个模型得到的预测值更可靠?并说明理由.‎ ‎5.根据预测,某地第n ‎(n∈N‎*‎)‎个月共享单车的投放量和损失量分别为an和bn ‎(单位:辆),‎ 其中an‎=‎‎5n‎4‎+15‎,‎1≤n≤3‎‎−10n+470‎,‎n≥4‎,bn‎=n+5‎,第n个月底的共享单车的保有量是前n个月的 累计投放量与累计损失量的差. ‎ ‎(1)求该地区第4个月底的共享单车的保有量;‎ ‎(2)已知该地共享单车停放点第n个月底的单车容纳量Sn‎=−4‎(n−46)‎‎2‎+8800‎(单位:辆). 设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?‎ ‎6.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:‎ 最高气温 ‎[10,15)‎ ‎[15,20)‎ ‎[20,25)‎ ‎[25,30)‎ ‎[30,35)‎ ‎[35,40)‎ 天数 ‎2‎ ‎16‎ ‎36‎ ‎25‎ ‎7‎ ‎4‎ 以最高气温位于各区间的频率代替最高气温位于该区间的概率。‎ ‎(Ⅰ)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;‎ ‎(Ⅱ)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?‎ ‎7.在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.‎ ‎(I)求接受甲种心理暗示的志愿者中包含A1但不包含的频率。‎ ‎(II)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.‎ ‎8.(题文)(2017新课标全国II理科)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg).其频率分布直方图如下:‎ ‎(1)设两种养殖方法的箱产量相互独立,记A表示事件:“旧养殖法的箱产量低于50 kg,新养殖法的箱产量不低于50 kg”,估计A的概率;‎ ‎(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:‎ 箱产量<50 kg 箱产量≥50 kg 旧养殖法 新养殖法 ‎(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).‎ 附:,‎K‎2‎‎=‎n‎(ad−bc)‎‎2‎‎(a+b)(c+d)(a+c)(b+d)‎ ‎9.从甲地到乙地要经过个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为, , .‎ ‎()设表示一辆车从甲地到乙地遇到红灯的个数,求随机变量的分布列和均值.‎ ‎()若有辆车独立地从甲地到乙地,求这辆车共遇到个红灯的概率.‎ 参考答案 ‎1.(Ⅰ)从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(Ⅱ)(i)答案见解析;(ii).‎ ‎【来源】2018年全国普通高等学校招生统一考试理科数学(天津卷)‎ ‎【解析】分析:(Ⅰ)由分层抽样的概念可知应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.‎ ‎(Ⅱ)(i)随机变量X的所有可能取值为0,1,2,3.且分布列为超几何分布,即P(X=k)=(k=0,1,2,3).据此求解分布列即可,计算相应的数学期望为.‎ ‎(ii)由题意结合题意和互斥事件概率公式可得事件A发生的概率为.‎ 详解:(Ⅰ)由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2,‎ 由于采用分层抽样的方法从中抽取7人,‎ 因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.‎ ‎(Ⅱ)(i)随机变量X的所有可能取值为0,1,2,3.‎ P(X=k)=(k=0,1,2,3).‎ 所以,随机变量X的分布列为 X ‎0‎ ‎1‎ ‎2‎ ‎3‎ P 随机变量X的数学期望.‎ ‎(ii)设事件B为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;‎ 事件C为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,‎ 则A=B∪C,且B与C互斥,‎ 由(i)知,P(B)=P(X=2),P(C)=P(X=1),‎ 故P(A)=P(B∪C)=P(X=2)+P(X=1)= .‎ 所以,事件A发生的概率为.‎ 点睛:本题主要在考查超几何分布和分层抽样.超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超几何分布的特征是:①考查对象分两类;②已知各类对象的个数;③从中抽取若干个个体,考查某类个体个数X的概率分布,超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型.进行分层抽样的相关计算时,常利用以下关系式巧解:(1) ;(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.‎ ‎2.(1) 概率为0.025‎ ‎(2) 概率估计为0.35‎ ‎(3) Dξ‎1‎>Dξ‎4‎>Dξ‎2‎=Dξ‎5‎>Dξ‎3‎>‎Dξ‎6‎ ‎【来源】2018年全国普通高等学校招生统一考试理科数学(北京卷)‎ ‎【解析】分析:(1)先根据频数计算是第四类电影的频率,再乘以第四类电影好评率得所求概率,(2) 恰有1部获得好评为第四类电影获得好评第五类电影没获得好评和第四类电影没获得好评第五类电影获得好评这两个互斥事件,先利用独立事件概率乘法公式分别求两个互斥事件的概率,再相加得结果,(3) ξk服从0-1分布,因此Dξk=p(1-p)‎,即得Dξ‎1‎>Dξ‎4‎>Dξ‎2‎=Dξ‎5‎>Dξ‎3‎>Dξ‎6‎.‎ 详解:解:(Ⅰ)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000,‎ 第四类电影中获得好评的电影部数是200×0.25=50.‎ 故所求概率为‎50‎‎2000‎‎=0.025‎.‎ ‎(Ⅱ)设事件A为“从第四类电影中随机选出的电影获得好评”,‎ 事件B为“从第五类电影中随机选出的电影获得好评”.‎ 故所求概率为P(‎A
查看更多

相关文章

您可能关注的文档