2020年四川省内江市中考数学试卷(含解析)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2020年四川省内江市中考数学试卷(含解析)

‎2020年四川省内江市中考数学试卷 一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)‎ ‎1.(3分)(2020•内江)‎1‎‎2‎的倒数是(  )‎ A.2 B.‎1‎‎2‎ C.‎-‎‎1‎‎2‎ D.﹣2‎ ‎2.(3分)(2020•内江)下列四个数中,最小的数是(  )‎ A.0 B.‎-‎‎1‎‎2020‎ C.5 D.﹣1‎ ‎3.(3分)(2020•内江)下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是(  )‎ A. B. ‎ C. D.‎ ‎4.(3分)(2020•内江)如图,已知直线a∥b,∠1=50°,则∠2的度数为(  )‎ A.140° B.130° C.50° D.40°‎ ‎5.(3分)(2020•内江)小明参加学校举行的“保护环境”主题演讲比赛,五位评委给出的评分分别为:90,85,80,90,95,则这组数据的中位数和众数分别是(  )‎ A.80,90 B.90,90 C.90,85 D.90,95‎ ‎6.(3分)(2020•内江)将直线y=﹣2x﹣1向上平移两个单位,平移后的直线所对应的函数关系式为(  )‎ A.y=﹣2x﹣5 B.y=﹣2x﹣3 C.y=﹣2x+1 D.y=﹣2x+3‎ ‎7.(3分)(2020•内江)如图,在△ABC中,D、E分别是AB和AC的中点,S四边形BCED=15,则S△ABC=(  )‎ 第32页(共32页)‎ A.30 B.25 C.22.5 D.20‎ ‎8.(3分)(2020•内江)如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是AC的中点,则∠D的度数是(  )‎ A.30° B.40° C.50° D.60°‎ ‎9.(3分)(2020•内江)如图,点A是反比例函数y‎=‎kx图象上的一点,过点A作AC⊥x轴,垂足为点C,D为AC的中点,若△AOD的面积为1,则k的值为(  )‎ A.‎4‎‎3‎ B.‎8‎‎3‎ C.3 D.4‎ ‎10.(3分)(2020•内江)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺.则符合题意的方程是(  )‎ A.‎1‎‎2‎x=(x﹣5)﹣5 B.‎1‎‎2‎x=(x+5)+5 ‎ C.2x=(x﹣5)﹣5 D.2x=(x+5)+5‎ ‎11.(3分)(2020•内江)如图,矩形ABCD中,BD为对角线,将矩形ABCD沿BE、BF所在直线折叠,使点A落在BD上的点M处,点C落在BD上的点N处,连结EF.已知AB 第32页(共32页)‎ ‎=3,BC=4,则EF的长为(  )‎ A.3 B.5 C.‎5‎‎13‎‎6‎ D.‎‎13‎ ‎12.(3分)(2020•内江)在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,已知直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t的取值范围是(  )‎ A.‎1‎‎2‎‎≤‎t<2 B.‎1‎‎2‎‎<‎t≤1 ‎ C.1<t≤2 D.‎1‎‎2‎‎≤‎t≤2且t≠1‎ 二、填空题(本大题共4小题,每小题5分,共20分)‎ ‎13.(5分)(2020•内江)在函数y‎=‎‎1‎‎2x-4‎中,自变量x的取值范围是   .‎ ‎14.(5分)(2020•内江)2020年6月23日9时43分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功发射北斗系统第五十五颗导航卫星,标志着北斗三号卫星导航定位系统正式建成.根据最新数据,目前兼容北斗的终端产品至少有7亿台,其中7亿用科学记数法表示为   .‎ ‎15.(5分)(2020•内江)已知关于x的一元二次方程(m﹣1)2x2+3mx+3=0有一实数根为﹣1,则该方程的另一个实数根为   .‎ ‎16.(5分)(2020•内江)如图,在矩形ABCD中,BC=10,∠ABD=30°,若点M、N分别是线段DB、AB上的两个动点,则AM+MN的最小值为   .‎ 三、解答题(本大题共5小题,共44分,解答应写出必要的文字说明或推演步骤)‎ ‎17.(7分)(2020•内江)计算:(‎-‎‎1‎‎2‎)﹣1﹣|﹣2|+4sin60°‎-‎12‎+‎(π﹣3)0.‎ ‎18.(9分)(2020•内江)如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB∥‎ 第32页(共32页)‎ CD,AE=DF,∠A=∠D.‎ ‎(1)求证:AB=CD;‎ ‎(2)若AB=CF,∠B=40°,求∠D的度数.‎ ‎19.(9分)(2020•内江)我市某中学举行“法制进校园”知识竞赛,赛后将学生的成绩分为A、B、C、D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图.请你根据统计图解答下列问题.‎ ‎(1)成绩为“B等级”的学生人数有   名;‎ ‎(2)在扇形统计图中,表示“D等级”的扇形的圆心角度数为   ,图中m的值为   ;‎ ‎(3)学校决定从本次比赛获得“A等级”的学生只能怪,选出2名去参加市中学生知识竞赛.已知“A等级”中有1名女生,请用列表或画树状图的方法求出女生被选中的概率.‎ ‎20.(9分)(2020•内江)为了维护我国海洋权力,海监部门对我国领海实行了常态化巡航管理.如图,正在执行巡航任务的海监船以每小时60海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,海监船继续向东航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.‎ ‎(1)求B处到灯塔P的距离;‎ ‎(2)已知灯塔P的周围50海里内有暗礁,若海监船继续向正东方向航行是否安全?‎ 第32页(共32页)‎ ‎21.(10分)(2020•内江)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连结BE.‎ ‎(1)求证:BE是⊙O的切线;‎ ‎(2)设OE交⊙O于点F,若DF=2,BC=4‎3‎,求线段EF的长;‎ ‎(3)在(2)的条件下,求阴影部分的面积.‎ 四、填空题(本大题共4小题,每小题6分,共24分.)‎ ‎22.(6分)(2020•内江)分解因式:b4﹣b2﹣12=   .‎ ‎23.(6分)(2020•内江)若数a使关于x的分式方程x+2‎x-1‎‎+a‎1-x=‎3的解为非负数,且使关于y的不等式组y-3‎‎4‎‎-y+1‎‎3‎≥-‎‎13‎‎12‎‎2(y-a)<0‎的解集为y≤0,则符合条件的所有整数a的积为   .‎ ‎24.(6分)(2020•内江)如图,在平面直角坐标系中,点A(﹣2,0),直线l:y‎=‎‎3‎‎3‎x‎+‎‎3‎‎3‎与x轴交于点B,以AB为边作等边△ABA1,过点A1作A1B1∥x轴,交直线l于点B1,以A1B1为边作等边△A1B1A2,过点A2作A2B2∥x轴,交直线l于点B2,以A2B2为边作等边△A2B2A3,以此类推……,则点A2020的纵坐标是   .‎ 第32页(共32页)‎ ‎25.(6分)(2020•内江)已知抛物线y1=﹣x2+4x(如图)和直线y2=2x+b.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2.若y1≠y2,取y1和y2中较大者为M;若y1=y2,记M=y1=y2.①当x=2时,M的最大值为4;②当b=﹣3时,使M>y2的x的取值范围是﹣1<x<3;③当b=﹣5时,使M=3的x的值是x1=1,x2=3;④当b≥1时,M随x的增大而增大.上述结论正确的是   .(填写所有正确结论的序号)‎ 五、解答题(本大题共3小题,每小题12分,共36分)‎ ‎26.(12分)(2020•内江)我们知道,任意一个正整数x都可以进行这样的分解:x=m×n(m,n是正整数,且m≤n),在x的所有这种分解中,如果m,n两因数之差的绝对值最小,我们就称m×n是x的最佳分解.并规定:f(x)‎=‎mn.‎ 例如:18可以分解成1×18,2×9或3×6,因为18﹣1>9﹣2>6﹣3,所以3×6是18的最佳分解,所以f(18)‎=‎3‎‎6‎=‎‎1‎‎2‎.‎ ‎(1)填空:f(6)=   ;f(9)=   ;‎ ‎(2)一个两位正整数t(t=10a+b,1≤a≤b≤9,a,b为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求f(t)的最大值;‎ ‎(3)填空:‎ 第32页(共32页)‎ ‎①f(22×3×5×7)=   ;②f(23×3×5×7)=   ;③f(24×3×5×7)=   ;④f(25×3×5×7)=   .‎ ‎27.(12分)(2020•内江)如图,正方形ABCD中,P是对角线AC上的一个动点(不与A、C重合),连结BP,将BP绕点B顺时针旋转90°到BQ,连结QP交BC于点E,QP延长线与边AD交于点F.‎ ‎(1)连结CQ,求证:AP=CQ;‎ ‎(2)若AP‎=‎‎1‎‎4‎AC,求CE:BC的值;‎ ‎(3)求证:PF=EQ.‎ ‎28.(12分)(2020•内江)如图,抛物线y=ax2+bx+c经过A(﹣1,0)、B(4,0)、C(0,2)三点,点D(x,y)为抛物线上第一象限内的一个动点.‎ ‎(1)求抛物线所对应的函数表达式;‎ ‎(2)当△BCD的面积为3时,求点D的坐标;‎ ‎(3)过点D作DE⊥BC,垂足为点E,是否存在点D,使得△CDE中的某个角等于∠ABC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.‎ 第32页(共32页)‎ ‎2020年四川省内江市中考数学试卷 参考答案与试题解析 一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)‎ ‎1.(3分)(2020•内江)‎1‎‎2‎的倒数是(  )‎ A.2 B.‎1‎‎2‎ C.‎-‎‎1‎‎2‎ D.﹣2‎ ‎【解答】解:∵‎1‎‎2‎‎×‎2=1,‎ ‎∴‎1‎‎2‎的倒数是2,‎ 故选:A.‎ ‎2.(3分)(2020•内江)下列四个数中,最小的数是(  )‎ A.0 B.‎-‎‎1‎‎2020‎ C.5 D.﹣1‎ ‎【解答】解:∵|‎-‎‎1‎‎2020‎|<|﹣1|,‎ ‎∴‎-‎1‎‎2020‎>-‎1,‎ ‎∴5>0‎>-‎1‎‎2020‎>-‎1,‎ 因此最小的是﹣1,‎ 故选:D.‎ ‎3.(3分)(2020•内江)下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是(  )‎ A. B. ‎ C. D.‎ ‎【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;‎ B、是轴对称图形,不是中心对称图形,故本选项不合题意;‎ C、是中心对称图形,故本选项符合题意;‎ 第32页(共32页)‎ D、既不是轴对称图形,也不是中心对称图形,故本选项不合题意.‎ 故选:C.‎ ‎4.(3分)(2020•内江)如图,已知直线a∥b,∠1=50°,则∠2的度数为(  )‎ A.140° B.130° C.50° D.40°‎ ‎【解答】解:∵直线a∥b,‎ ‎∴∠3=∠1=50°.‎ 又∵∠2+∠3=180°,‎ ‎∴∠2=130°.‎ 故选:B.‎ ‎5.(3分)(2020•内江)小明参加学校举行的“保护环境”主题演讲比赛,五位评委给出的评分分别为:90,85,80,90,95,则这组数据的中位数和众数分别是(  )‎ A.80,90 B.90,90 C.90,85 D.90,95‎ ‎【解答】解:将数据重新排列为80,85,90,90,95,‎ 所以这组数据的中位数是90,众数为90,‎ 故选:B.‎ ‎6.(3分)(2020•内江)将直线y=﹣2x﹣1向上平移两个单位,平移后的直线所对应的函数关系式为(  )‎ A.y=﹣2x﹣5 B.y=﹣2x﹣3 C.y=﹣2x+1 D.y=﹣2x+3‎ ‎【解答】解:直线y=﹣2x﹣1向上平移两个单位,所得的直线是y=﹣2x+1,‎ 故选:C.‎ ‎7.(3分)(2020•内江)如图,在△ABC中,D、E分别是AB和AC的中点,S四边形BCED=15,则S△ABC=(  )‎ 第32页(共32页)‎ A.30 B.25 C.22.5 D.20‎ ‎【解答】解:∵D、E分别是AB、AC边上的中点,‎ ‎∴DE∥BC,DE‎=‎‎1‎‎2‎BC,‎ ‎∴△ADE∽△ABC,‎ ‎∴S‎△ADES‎△ABC‎=‎(DEBC)2‎=‎‎1‎‎4‎,‎ ‎∴S△ADE:S四边形BCED=1:3,‎ 即S△ADE:15=1:3,‎ ‎∴S△ADE=5,‎ ‎∴S△ABC=5+15=20.‎ 故选:D.‎ ‎8.(3分)(2020•内江)如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是AC的中点,则∠D的度数是(  )‎ A.30° B.40° C.50° D.60°‎ ‎【解答】解:连接OB,如图,‎ ‎∵点B是AC的中点,‎ 第32页(共32页)‎ ‎∴∠AOB=∠COB‎=‎‎1‎‎2‎∠AOC‎=‎1‎‎2‎×‎120°=60°,‎ ‎∴∠D‎=‎‎1‎‎2‎∠AOB=30°.‎ 故选:A.‎ ‎9.(3分)(2020•内江)如图,点A是反比例函数y‎=‎kx图象上的一点,过点A作AC⊥x轴,垂足为点C,D为AC的中点,若△AOD的面积为1,则k的值为(  )‎ A.‎4‎‎3‎ B.‎8‎‎3‎ C.3 D.4‎ ‎【解答】解:∵AC⊥x轴,垂足为点C,D为AC的中点,若△AOD的面积为1,‎ ‎∴△AOC的面积为2,‎ ‎∵S△AOC‎=‎‎1‎‎2‎|k|=2,且反比例函数y‎=‎kx图象在第一象限,‎ ‎∴k=4,‎ 故选:D.‎ ‎10.(3分)(2020•内江)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺.则符合题意的方程是(  )‎ A.‎1‎‎2‎x=(x﹣5)﹣5 B.‎1‎‎2‎x=(x+5)+5 ‎ C.2x=(x﹣5)﹣5 D.2x=(x+5)+5‎ ‎【解答】解:设绳索长x尺,则竿长(x﹣5)尺,‎ 第32页(共32页)‎ 依题意,得:‎1‎‎2‎x=(x﹣5)﹣5.‎ 故选:A.‎ ‎11.(3分)(2020•内江)如图,矩形ABCD中,BD为对角线,将矩形ABCD沿BE、BF所在直线折叠,使点A落在BD上的点M处,点C落在BD上的点N处,连结EF.已知AB=3,BC=4,则EF的长为(  )‎ A.3 B.5 C.‎5‎‎13‎‎6‎ D.‎‎13‎ ‎【解答】解:∵四边形ABCD是矩形,‎ ‎∴AB=CD=3,AD=BC=4,∠A=∠C=∠EDF=90°,‎ ‎∴BD‎=AB‎2‎+AD‎2‎=‎3‎‎2‎‎+‎‎4‎‎2‎=‎5,‎ ‎∵将矩形ABCD沿BE所在直线折叠,使点A落在BD上的点M处,‎ ‎∴AE=EM,∠A=∠BME=90°,‎ ‎∴∠EMD=90°,‎ ‎∵∠EDM=∠ADB,‎ ‎∴△EDM∽△BDA,‎ ‎∴EDBD‎=‎EMAB,‎ 设DE=x,则AE=EM=4﹣x,‎ ‎∴x‎5‎‎=‎‎4-x‎3‎,‎ 解得x‎=‎‎5‎‎2‎,‎ ‎∴DE‎=‎‎5‎‎2‎,‎ 同理△DNF∽△DCB,‎ ‎∴DFBD‎=‎NFBC,‎ 设DF=y,则CF=NF=3﹣y,‎ 第32页(共32页)‎ ‎∴y‎5‎‎=‎‎3-y‎4‎,‎ 解得y‎=‎‎5‎‎3‎.‎ ‎∴DF‎=‎‎5‎‎3‎.‎ ‎∴EF‎=DE‎2‎+DF‎2‎=‎(‎5‎‎2‎‎)‎‎2‎+(‎‎5‎‎3‎‎)‎‎2‎=‎‎5‎‎13‎‎6‎.‎ 故选:C.‎ ‎12.(3分)(2020•内江)在平面直角坐标系中,横坐标和纵坐标都是整数的点叫做整点,已知直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t的取值范围是(  )‎ A.‎1‎‎2‎‎≤‎t<2 B.‎1‎‎2‎‎<‎t≤1 ‎ C.1<t≤2 D.‎1‎‎2‎‎≤‎t≤2且t≠1‎ ‎【解答】解:∵y=tx+2t+2=t(x+2)+2(t>0),‎ ‎∴直线y=tx+2t+2(t>0)经过点(﹣2,2),如图,‎ 当直线经过(0,3)时,直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,‎ 则3=2t+2,解得t‎=‎‎1‎‎2‎;‎ 当直线经过(0,6)时,直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,‎ 则6=2t+2,解得t=2;‎ 当直线经过(0,4)时,直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有三个整点,‎ 则4=2t+2,解得t=1;‎ ‎∴直线y=tx+2t+2(t>0)与两坐标轴围成的三角形区域(不含边界)中有且只有四个整点,则t的取值范围是‎1‎‎2‎‎≤‎t≤2且t≠1,‎ 故选:D.‎ 第32页(共32页)‎ 二、填空题(本大题共4小题,每小题5分,共20分)‎ ‎13.(5分)(2020•内江)在函数y‎=‎‎1‎‎2x-4‎中,自变量x的取值范围是 x≠2 .‎ ‎【解答】解:根据题意得2x﹣4≠0,‎ 解得x≠2;‎ ‎∴自变量x的取值范围是x≠2.‎ ‎14.(5分)(2020•内江)2020年6月23日9时43分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功发射北斗系统第五十五颗导航卫星,标志着北斗三号卫星导航定位系统正式建成.根据最新数据,目前兼容北斗的终端产品至少有7亿台,其中7亿用科学记数法表示为 7×108 .‎ ‎【解答】解:7亿=700000000=7×108,‎ 故答案为:7×108.‎ ‎15.(5分)(2020•内江)已知关于x的一元二次方程(m﹣1)2x2+3mx+3=0有一实数根为﹣1,则该方程的另一个实数根为 ‎-‎‎1‎‎3‎ .‎ ‎【解答】解:把x=﹣1代入原方程得,‎ ‎(m﹣1)2﹣3m+3=0,即:m2﹣5m+4=0,‎ 解得,m=4,m=1(不合题意舍去),‎ 当m=4时,原方程变为:9x2+12x+3=0,即,3x2+4x+1=0,‎ 由根与系数的关系得:x1•x2‎=‎‎1‎‎3‎,又x1=﹣1,‎ 第32页(共32页)‎ ‎∴x2‎‎=-‎‎1‎‎3‎ 故答案为:‎-‎‎1‎‎3‎.‎ ‎16.(5分)(2020•内江)如图,在矩形ABCD中,BC=10,∠ABD=30°,若点M、N分别是线段DB、AB上的两个动点,则AM+MN的最小值为 15 .‎ ‎【解答】解:作点A关于BD的对称点A′,连接MA′,BA′,过点A′H⊥AB于H.‎ ‎∵BA=BA′,∠ABD=∠DBA′=30°,‎ ‎∴∠ABA′=60°,‎ ‎∴△ABA′是等边三角形,‎ ‎∵四边形ABCD是矩形,‎ ‎∴AD=BC=10,‎ 在Rt△ABD中,AB‎=ADtan30°‎=‎10‎3‎,‎ ‎∵A′H⊥AB,‎ ‎∴AH=HB=5‎3‎,‎ ‎∴A′H‎=‎‎3‎AH=15,‎ ‎∵AM+MN=A′M+MN≥A′H,‎ ‎∴AM+MN≥15,‎ ‎∴AM+MN的最小值为15.‎ 故答案为15.‎ 三、解答题(本大题共5小题,共44分,解答应写出必要的文字说明或推演步骤)‎ 第32页(共32页)‎ ‎17.(7分)(2020•内江)计算:(‎-‎‎1‎‎2‎)﹣1﹣|﹣2|+4sin60°‎-‎12‎+‎(π﹣3)0.‎ ‎【解答】解:原式=﹣2﹣2+4‎×‎3‎‎2‎-‎2‎3‎‎+‎1‎ ‎=﹣2﹣2+2‎3‎‎-‎2‎3‎‎+‎1‎ ‎=﹣3.‎ ‎18.(9分)(2020•内江)如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB∥CD,AE=DF,∠A=∠D.‎ ‎(1)求证:AB=CD;‎ ‎(2)若AB=CF,∠B=40°,求∠D的度数.‎ ‎【解答】(1)证明:∵AB∥CD,‎ ‎∴∠B=∠C,‎ 在△ABE和△DCF中,‎ ‎∠A=∠D‎∠B=∠CAE=DF‎,‎ ‎∴△ABE≌△DCF(AAS),‎ ‎∴AB=CD;‎ ‎(2)解:∵△ABE≌△DCF,‎ ‎∴AB=CD,BE=CF,∠B=∠C,‎ ‎∵∠B=40°,‎ ‎∴∠C=40°‎ ‎∵AB=CF,‎ ‎∴CF=CD,‎ ‎∴∠D=∠CFD‎=‎1‎‎2‎×‎(180°﹣40°)=70°.‎ ‎19.(9分)(2020•内江)我市某中学举行“法制进校园”知识竞赛,赛后将学生的成绩分为A、B、C、D 第32页(共32页)‎ 四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图.请你根据统计图解答下列问题.‎ ‎(1)成绩为“B等级”的学生人数有 5 名;‎ ‎(2)在扇形统计图中,表示“D等级”的扇形的圆心角度数为 72° ,图中m的值为 40 ;‎ ‎(3)学校决定从本次比赛获得“A等级”的学生只能怪,选出2名去参加市中学生知识竞赛.已知“A等级”中有1名女生,请用列表或画树状图的方法求出女生被选中的概率.‎ ‎【解答】解:(1)3÷15%=20(名),20﹣3﹣8﹣4=5(名),‎ 故答案为:5;‎ ‎(2)360°‎×‎4‎‎20‎=‎72°,8÷20=40%,即m=40,‎ 故答案为:72°,40;‎ ‎(3)“A等级”2男1女,从中选取2人,所有可能出现的结果如下:‎ 共有6种可能出现的结果,其中女生被选中的有4种,‎ ‎∴P(女生被选中)‎=‎4‎‎6‎=‎‎2‎‎3‎.‎ ‎20.(9分)(2020•内江)为了维护我国海洋权力,海监部门对我国领海实行了常态化巡航管理.如图,正在执行巡航任务的海监船以每小时60海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,海监船继续向东航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.‎ 第32页(共32页)‎ ‎(1)求B处到灯塔P的距离;‎ ‎(2)已知灯塔P的周围50海里内有暗礁,若海监船继续向正东方向航行是否安全?‎ ‎【解答】解:(1)∵∠PAB=30°,∠ABP=120°,‎ ‎∴∠APB=180°﹣∠PAB﹣∠ABP=30°,‎ ‎∴PB=AB=60海里;‎ ‎(2)作PH⊥AB于H.‎ ‎∵∠BAP=∠BPA=30°,‎ ‎∴BA=BP=60,‎ 在Rt△PBH中,PH=PB•sin60°=60‎×‎3‎‎2‎=‎30‎3‎,‎ ‎∵30‎3‎‎>‎50,‎ ‎∴海监船继续向正东方向航行是安全的.‎ ‎21.(10分)(2020•内江)如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连结BE.‎ ‎(1)求证:BE是⊙O的切线;‎ ‎(2)设OE交⊙O于点F,若DF=2,BC=4‎3‎,求线段EF的长;‎ ‎(3)在(2)的条件下,求阴影部分的面积.‎ 第32页(共32页)‎ ‎【解答】(1)证明:连接OC,如图,‎ ‎∵CE为切线,‎ ‎∴OC⊥CE,‎ ‎∴∠OCE=90°,‎ ‎∵OD⊥BC,‎ ‎∴CD=BD,‎ 即OD垂直平分BC,‎ ‎∴EC=EB,‎ 在△OCE和△OBE中 OC=OBOE=OEEC=EB‎,‎ ‎∴△OCE≌△OBE(SSS),‎ ‎∴∠OBE=∠OCE=90°,‎ ‎∴OB⊥BE,‎ ‎∴BE与⊙O相切;‎ ‎(2)解:设⊙O的半径为x,则OD=OF﹣DF=x﹣2,OB=x,‎ 第32页(共32页)‎ 在Rt△OBD中,BD‎=‎‎1‎‎2‎BC=2‎3‎,‎ ‎∵OD2+BD2=OB2,‎ ‎∴(x﹣2)2+(2‎3‎)2=x2,解得x=4,‎ ‎∴OD=2,OB=4,‎ ‎∴∠OBD=30°,‎ ‎∴∠BOD=60°,‎ ‎∴OE=2OB=8,‎ ‎∴EF=OE﹣OF=8﹣4=4.‎ ‎(3)∵∠BOE=60°,∠OBE=90°,‎ ‎∴在Rt△OBE中,BE‎=‎‎3‎OB=4‎3‎,‎ ‎∴S阴影=S四边形OBEC﹣S扇形OBC ‎=2‎×‎1‎‎2‎×‎4×4‎3‎‎-‎‎120⋅π×‎‎4‎‎2‎‎360‎,‎ ‎=16‎3‎‎-‎‎16π‎3‎.‎ 四、填空题(本大题共4小题,每小题6分,共24分.)‎ ‎22.(6分)(2020•内江)分解因式:b4﹣b2﹣12= (b+2)(b﹣2)(b2+3) .‎ ‎【解答】解:b4﹣b2﹣12=(b2﹣4)(b2+3)=(b+2)(b﹣2)(b2+3),‎ 故答案为:(b+2)(b﹣2)(b2+3).‎ ‎23.(6分)(2020•内江)若数a使关于x的分式方程x+2‎x-1‎‎+a‎1-x=‎3的解为非负数,且使关于y的不等式组y-3‎‎4‎‎-y+1‎‎3‎≥-‎‎13‎‎12‎‎2(y-a)<0‎的解集为y≤0,则符合条件的所有整数a的积为 40 .‎ ‎【解答】解:去分母,得:x+2﹣a=3(x﹣1),‎ 解得:x‎=‎‎5-a‎2‎,‎ ‎∵分式方程的解为非负数,‎ ‎∴‎5-a‎2‎‎≥‎0,且‎5-a‎2‎‎≠‎1,‎ 解得a≤5且a≠3,‎ 解不等式y-3‎‎4‎‎-y+1‎‎3‎≥-‎‎13‎‎12‎,得:y≤0,‎ 第32页(共32页)‎ 解不等式2(y﹣a)<0,得:y<a,‎ ‎∵不等式组的解集为y≤0,‎ ‎∴a>0,‎ ‎∴0<a≤5,‎ 则整数a的值为1、2、4、5,‎ ‎∴符合条件的所有整数a的积为1×2×4×5=40,‎ 故答案为:40.‎ ‎24.(6分)(2020•内江)如图,在平面直角坐标系中,点A(﹣2,0),直线l:y‎=‎‎3‎‎3‎x‎+‎‎3‎‎3‎与x轴交于点B,以AB为边作等边△ABA1,过点A1作A1B1∥x轴,交直线l于点B1,以A1B1为边作等边△A1B1A2,过点A2作A2B2∥x轴,交直线l于点B2,以A2B2为边作等边△A2B2A3,以此类推……,则点A2020的纵坐标是 ‎2‎‎2020‎‎-1‎‎2‎‎3‎ .‎ ‎【解答】解:∵直线l:y‎=‎‎3‎‎3‎x‎+‎‎3‎‎3‎与x轴交于点B,‎ ‎∴B(﹣1,0),‎ ‎∴OB=1,‎ ‎∵A(﹣2,0),‎ ‎∴OA=2,‎ ‎∴AB=1,‎ ‎∵△ABA1是等边三角形,‎ ‎∴A1(‎-‎‎3‎‎2‎,‎3‎‎2‎),‎ 把y‎=‎‎3‎‎2‎代入y‎=‎‎3‎‎3‎x‎+‎‎3‎‎3‎,求得x‎=‎‎1‎‎2‎,‎ 第32页(共32页)‎ ‎∴B1(‎1‎‎2‎,‎3‎‎2‎),‎ ‎∴A1B1=2,‎ ‎∴A2(‎-‎‎1‎‎2‎,‎3‎‎2‎‎+‎3‎‎2‎×‎2),即A2(‎-‎‎1‎‎2‎,‎3‎‎3‎‎2‎),‎ 把y‎=‎‎3‎‎3‎‎2‎代入y‎=‎‎3‎‎3‎x‎+‎‎3‎‎3‎,求得x‎=‎‎7‎‎2‎,‎ ‎∴B2(‎7‎‎2‎,‎3‎‎3‎‎2‎),‎ ‎∴A2B2=4,‎ ‎∴A3(3,‎3‎‎3‎‎2‎‎+‎3‎‎2‎×‎4),即A3(3,‎7‎‎3‎‎2‎),‎ ‎……,‎ An的纵坐标为‎2‎n‎-1‎‎2‎‎3‎,‎ ‎∴点A2020的纵坐标是‎2‎‎2020‎‎-1‎‎2‎‎3‎,‎ 故答案为‎2‎‎2020‎‎-1‎‎2‎‎3‎.‎ ‎25.(6分)(2020•内江)已知抛物线y1=﹣x2+4x(如图)和直线y2=2x+b.我们规定:当x取任意一个值时,x对应的函数值分别为y1和y2.若y1≠y2,取y1和y2中较大者为M;若y1=y2,记M=y1=y2.①当x=2时,M的最大值为4;②当b=﹣3时,使M>y2的x的取值范围是﹣1<x<3;③当b=﹣5时,使M=3的x的值是x1=1,x2=3;④当b≥1时,M随x的增大而增大.上述结论正确的是 ②③④ .(填写所有正确结论的序号)‎ ‎【解答】解:①当x=2时,y1=4,y2=4+b,无法判断4与4+b的大小,故①错误.‎ ‎②如图1中,b=﹣3时,‎ 第32页(共32页)‎ 由y=-x‎2‎+4xy=2x-3‎,解得x=-1‎y=-5‎或x=3‎y=3‎,‎ ‎∴两个函数图象的交点坐标为(﹣1,﹣5)和(3,3),‎ 观察图象可知,使M>y2的x的取值范围是﹣1<x<3,故②正确,‎ ‎③如图2中,b=﹣5时,图象如图所示,‎ M=3时,y1=3,‎ ‎∴﹣x2+4x=3,‎ 解得x=1或3,故③正确,‎ ‎④当b=1时,由y=2x+1‎y=-x‎2‎+4x,消去y得到,x2﹣2x+1=0,‎ ‎∵△=0,‎ ‎∴此时直线y=2x+1与抛物线只有一个交点,‎ 第32页(共32页)‎ ‎∴b>1时,直线y=2x+b与抛物线没有交点,‎ ‎∴M随x的增大而增大,故④正确.‎ 五、解答题(本大题共3小题,每小题12分,共36分)‎ ‎26.(12分)(2020•内江)我们知道,任意一个正整数x都可以进行这样的分解:x=m×n(m,n是正整数,且m≤n),在x的所有这种分解中,如果m,n两因数之差的绝对值最小,我们就称m×n是x的最佳分解.并规定:f(x)‎=‎mn.‎ 例如:18可以分解成1×18,2×9或3×6,因为18﹣1>9﹣2>6﹣3,所以3×6是18的最佳分解,所以f(18)‎=‎3‎‎6‎=‎‎1‎‎2‎.‎ ‎(1)填空:f(6)= ‎2‎‎3‎ ;f(9)= 1 ;‎ ‎(2)一个两位正整数t(t=10a+b,1≤a≤b≤9,a,b为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求f(t)的最大值;‎ ‎(3)填空:‎ ‎①f(22×3×5×7)= ‎20‎‎21‎ ;②f(23×3×5×7)= ‎24‎‎35‎ ;③f(24×3×5×7)= ‎35‎‎48‎ ;④f(25×3×5×7)= ‎24‎‎35‎ .‎ ‎【解答】解:(1)6可分解成1×6,2×3,‎ ‎∵6﹣1>3﹣2,‎ ‎∴2×3是6的最佳分解,‎ ‎∴f(6)‎=‎‎2‎‎3‎,‎ ‎9可分解成1×9,3×3,‎ ‎∵9﹣1>3﹣3,‎ ‎∴3×3是9的最佳分解,‎ ‎∴f(9)‎=‎3‎‎3‎=‎1,‎ 故答案为:‎2‎‎3‎;1;‎ ‎(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10b+a,‎ 根据题意得,t′﹣t=(10b+a)﹣(10a+b)=9(b﹣a)=54,‎ ‎∴b=a+6,‎ 第32页(共32页)‎ ‎∵1≤a≤b≤9,a,b为正整数,‎ ‎∴满足条件的t为:17,28,39;‎ ‎∵F(17)‎=‎‎1‎‎17‎,F(28)‎=‎‎4‎‎7‎,F(39)‎=‎‎1‎‎39‎,‎ ‎∵‎4‎‎7‎‎>‎1‎‎17‎>‎‎1‎‎39‎,‎ ‎∴F(t)的最大值为‎4‎‎7‎;‎ ‎(3)①∵22×3×5×7的是最佳分解为20×21,‎ ‎∴f(22×3×5×7)‎=‎‎20‎‎21‎,‎ 故答案为:‎20‎‎21‎;‎ ‎②∵23×3×5×7的最佳分解为24×35,‎ ‎∴f(23×3×5×7)‎=‎‎24‎‎35‎,‎ 故答案为‎24‎‎35‎;‎ ‎③∵24×3×5×7的最佳分解是35×48,‎ ‎∴f(24×3×5×7)‎=‎‎35‎‎48‎,‎ 故答案为:‎35‎‎48‎;‎ ‎④∵25×3×5×7的最佳分解是48×70,‎ ‎∴f(25×3×5×7)‎=‎48‎‎70‎=‎‎24‎‎35‎,‎ 故答案为:‎24‎‎35‎.‎ ‎27.(12分)(2020•内江)如图,正方形ABCD中,P是对角线AC上的一个动点(不与A、C重合),连结BP,将BP绕点B顺时针旋转90°到BQ,连结QP交BC于点E,QP延长线与边AD交于点F.‎ ‎(1)连结CQ,求证:AP=CQ;‎ ‎(2)若AP‎=‎‎1‎‎4‎AC,求CE:BC的值;‎ ‎(3)求证:PF=EQ.‎ 第32页(共32页)‎ ‎【解答】(1)证明:如图1,∵线段BP绕点B顺时针旋转90°得到线段BQ,‎ ‎∴BP=BQ,∠PBQ=90°.‎ ‎∵四边形ABCD是正方形,‎ ‎∴BA=BC,∠ABC=90°.‎ ‎∴∠ABC=∠PBQ.‎ ‎∴∠ABC﹣∠PBC=∠PBQ﹣∠PBC,即∠ABP=∠CBQ.‎ 在△BAP和△BCQ中,‎ ‎∵BA=BC‎∠ABP=∠CBQBP=BQ,‎ ‎∴△BAP≌△BCQ(SAS).‎ ‎∴CQ=AP.‎ ‎(2)解:过点C作CH⊥PQ于H,过点B作BT⊥PQ于T.‎ ‎∵AP‎=‎‎1‎‎4‎AC,‎ ‎∴可以假设AP=CQ=a,则PC=3a,‎ ‎∵四边形ABCD是正方形,‎ ‎∴∠BAC=∠ACB=45°,‎ ‎∵△ABP≌△CBQ,‎ ‎∴∠BCQ=∠BAP=45°,‎ ‎∴∠PCQ=90°,‎ ‎∴PQ‎=PC‎2‎+CQ‎2‎=‎(3a‎)‎‎2‎+‎a‎2‎=‎‎10‎a,‎ ‎∵CH⊥PQ,‎ ‎∴CH‎=PC⋅CQPQ=‎‎3‎‎10‎‎10‎a,‎ ‎∵BP=BQ,BT⊥PQ,‎ 第32页(共32页)‎ ‎∴PT=TQ,‎ ‎∵∠PBQ=90°,‎ ‎∴BT‎=‎‎1‎‎2‎PQ‎=‎‎10‎‎2‎a,‎ ‎∵CH∥BT,‎ ‎∴CEEB‎=CHBT=‎3‎‎10‎‎10‎a‎10‎‎2‎a=‎‎3‎‎5‎,‎ ‎∴CECB‎=‎‎3‎‎8‎.‎ ‎(3)解:结论:PF=EQ,理由是:‎ 如图2,当F在边AD上时,过P作PG⊥FQ,交AB于G,则∠GPF=90°,‎ ‎∵∠BPQ=45°,‎ ‎∴∠GPB=45°,‎ ‎∴∠GPB=∠PQB=45°,‎ ‎∵PB=BQ,∠ABP=∠CBQ,‎ ‎∴△PGB≌△QEB,‎ ‎∴EQ=PG,‎ ‎∵∠BAD=90°,‎ ‎∴F、A、G、P四点共圆,‎ 连接FG,‎ ‎∴∠FGP=∠FAP=45°,‎ ‎∴△FPG是等腰直角三角形,‎ ‎∴PF=PG,‎ ‎∴PF=EQ.‎ 第32页(共32页)‎ ‎28.(12分)(2020•内江)如图,抛物线y=ax2+bx+c经过A(﹣1,0)、B(4,0)、C(0,2)三点,点D(x,y)为抛物线上第一象限内的一个动点.‎ ‎(1)求抛物线所对应的函数表达式;‎ ‎(2)当△BCD的面积为3时,求点D的坐标;‎ ‎(3)过点D作DE⊥BC,垂足为点E,是否存在点D,使得△CDE中的某个角等于∠ABC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.‎ ‎【解答】解:(1)将A(﹣1,0)、B(4,0)、C(0,2)代入y=ax2+bx+c得:a-b+c=0‎‎16a+4b+c=0‎c=2‎,‎ 解得:a=-‎‎1‎‎2‎b=‎‎3‎‎2‎c=2‎.‎ 第32页(共32页)‎ 故抛物线的解析式为y‎=-‎‎1‎‎2‎x2‎+‎‎3‎‎2‎x+2.‎ ‎(2)如图2,设点M的坐标为(0,m),使得△BCM的面积为3,‎ ‎3×2÷4=1.5,‎ 则m=2+1.5‎=‎‎7‎‎2‎,‎ M(0,‎7‎‎2‎)‎ ‎∵点B(4,0),C(0,2),‎ ‎∴直线BC的解析式为y‎=-‎‎1‎‎2‎x+2,‎ ‎∴DM的解析式为y‎=-‎‎1‎‎2‎x‎+‎‎7‎‎2‎,‎ 联立抛物线解析式y=-‎1‎‎2‎x+‎‎7‎‎2‎y=-‎1‎‎2‎x‎2‎+‎3‎‎2‎x+2‎,‎ 解得x‎1‎‎=3‎y‎1‎‎=2‎,x‎2‎‎=1‎y‎2‎‎=3‎.‎ ‎∴点D的坐标为(3,2)或(1,3).‎ ‎(3)分两种情况考虑:‎ ‎①当∠DCE=2∠ABC时,取点F(0,﹣2),连接BF,如图3所示.‎ ‎∵OC=OF,OB⊥CF,‎ ‎∴∠ABC=∠ABF,‎ ‎∴∠CBF=2∠ABC.‎ ‎∵∠DCB=2∠ABC,‎ ‎∴∠DCB=∠CBF,‎ ‎∴CD∥BF.‎ ‎∵点B(4,0),F(0,﹣2),‎ ‎∴直线BF的解析式为y‎=‎‎1‎‎2‎x﹣2,‎ ‎∴直线CD的解析式为y‎=‎‎1‎‎2‎x+2.‎ 联立直线CD及抛物线的解析式成方程组得:y=‎1‎‎2‎x+2‎y=-‎1‎‎2‎x‎2‎+‎3‎‎2‎x+2‎,‎ 第32页(共32页)‎ 解得:x‎1‎‎=0‎y‎1‎‎=2‎(舍去),x‎2‎‎=2‎y‎2‎‎=3‎,‎ ‎∴点D的坐标为(2,3);‎ ‎②当∠CDE=2∠ABC时,过点C作CN⊥BF于点N,交OB于H.作点N关于BC的对称点P,连接NP交BC于点Q,如图4所示.‎ ‎∵∠OCH=90°﹣∠OHC,∠OBF=90°﹣∠BHN,‎ ‎∠OHC=∠BHN,‎ ‎∴∠OCH=∠OBF.‎ 在△OCH与△OBF中 ‎∠COH=∠BOF=90°‎‎∠OCH=∠OBF‎,‎ ‎∴△OCH∽△OBF,‎ ‎∴OHOF‎=‎OCOB,即OH‎2‎‎=‎‎2‎‎4‎,‎ ‎∴OH=1,H(1,0).‎ 设直线CN的解析式为y=kx+n(k≠0),‎ ‎∵C(0,2),H(1,0),‎ ‎∴n=2‎k+n=0‎,解得k=-2‎n=2‎,‎ ‎∴直线CN的解析式为y=﹣2x+2.‎ 连接直线BF及直线CN成方程组得:y=‎1‎‎2‎x-2‎y=-2x+2‎,‎ 解得:x=‎‎8‎‎5‎y=-‎‎6‎‎5‎,‎ ‎∴点N的坐标为(‎8‎‎5‎,‎-‎‎6‎‎5‎).‎ ‎∵点B(4,0),C(0,2),‎ ‎∴直线BC的解析式为y‎=-‎‎1‎‎2‎x+2.‎ ‎∵NP⊥BC,且点N(‎8‎‎5‎,‎-‎‎6‎‎5‎),‎ ‎∴直线NP的解析式为y=2x‎-‎‎22‎‎5‎.‎ 第32页(共32页)‎ 联立直线BC及直线NP成方程组得:y=-‎1‎‎2‎x+2‎y=2x-‎‎22‎‎5‎,‎ 解得:x=‎‎64‎‎25‎y=‎‎18‎‎25‎,‎ ‎∴点Q的坐标为(‎64‎‎25‎,‎18‎‎25‎).‎ ‎∵点N(‎8‎‎5‎,‎-‎‎6‎‎5‎),点N,P关于BC对称,‎ ‎∴点P的坐标为(‎88‎‎25‎,‎66‎‎25‎).‎ ‎∵点C(0,2),P(‎88‎‎25‎,‎66‎‎25‎),‎ ‎∴直线CP的解析式为y‎=‎‎2‎‎11‎x+2.‎ 将y‎=‎‎2‎‎11‎x+2代入y‎=-‎‎1‎‎2‎x2‎+‎‎3‎‎2‎x+2整理,得:11x2﹣29x=0,‎ 解得:x1=0(舍去),x2‎=‎‎29‎‎11‎,‎ ‎∴点D的横坐标为‎29‎‎11‎.‎ 综上所述:存在点D,使得△CDE的某个角恰好等于∠ABC的2倍,点D的横坐标为2或‎29‎‎11‎.‎ 第32页(共32页)‎ 第32页(共32页)‎
查看更多

相关文章

您可能关注的文档