- 2021-05-13 发布 |
- 37.5 KB |
- 32页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考数学一轮复习 专题练习9 圆1 浙教版
圆 (1) 班级 姓名 学号 一、选择题 1.如图,已知AB是⊙O的直径,∠D=40°,则∠CAB的度数为( ) A.20° B.40° C.50° D.70° 2.如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为( ) A.10cm B.15cm C.10cm D.20cm 3.如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是优弧上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是( ) A.15° B.20° C.25° D.30° 4.如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为( ) A.140° B.70° C.60° D.40° 5.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是( ) A.40cm B.50cm C.60cm D.80cm 6.如图,在等腰Rt△ABC中,AC=BC=,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是( ) A. B.π C. D.2 7.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=( ) A. B. C. D. 8.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为( ) A.20° B.25° C.40° D.50° 9.如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是( ) A.25° B.40° C.50° D.65° 10.在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为( ) A.E、F、G B.F、G、H C.G、H、E D.H、E、F 二、填空题 11.如图,四边形ABCD为⊙O的内接四边形,已知∠C=∠D,则AB与CD的位置关系是 . 12.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为______________. 13.如图,AB是⊙O的直径,AC、BC是⊙O的弦,直径DE⊥AC于点P.若点D在优弧上,AB=8,BC=3,则DP= . 14.如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC长为 . 15.如图,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为 . 三、解答题 16.如图,在Rt△ABC中,∠BAC=90° (1)先作∠ACB的平分线交AB边于点P,再以点P为圆心,PA长为半径作⊙P;(要求:尺规作图,保留作图痕迹,不写作法) (2)请你判断(1)中BC与⊙P的位置关系,并证明你的结论. 17.如图,已知四边形ABCD内接于圆O,连结BD,∠BAD=105°,∠DBC=75°. (1)求证:BD=CD; (2)若圆O的半径为3,求的长. 18.如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连结BD. (1)求证:∠A=∠BDC; (2)若CM平分∠ACD,且分别交AD、BD于点M、N,当DM=1时,求MN的长. 19.如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A. (1)判断直线MN与⊙O的位置关系,并说明理由; (2)若OA=4,∠BCM=60°,求图中阴影部分的面积. 20.如图,在△ABC中,E是AC边上的一点,且AE=AB,∠BAC=2∠CBE,以AB为直径作⊙O交AC于点D,交BE于点F. (1)求证:BC是⊙O的切线; (2)若AB=8,BC=6,求DE的长. 21.如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连结EF. (1)求证:∠1=∠F. (2)若sinB=,EF=2,求CD的长. 22.如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H. (1)求证:CD是半圆O的切线; (2)若DH=6﹣3,求EF和半径OA的长. 23.如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C. (1)求证:∠ACD=∠B; (2)如图2,∠BDC的平分线分别交AC,BC于点E,F; ①求tan∠CFE的值; ②若AC=3,BC=4,求CE的长. 24.如图,在△AOB中,∠AOB为直角,OA=6,OB=8,半径为2的动圆圆心Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度/秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连结CD、QC. (1)当t为何值时,点Q与点D重合? (2)当⊙Q经过点A时,求⊙P被OB截得的弦长. (3)若⊙P与线段QC只有一个公共点,求t的取值范围. 答案详解 一、选择题 2.如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为( ) A.10cm B.15cm C.10cm D.20cm 【考点】圆锥的计算. 【分析】根据等腰三角形的性质得到OE的长,再利用弧长公式计算出弧CD的长,设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到r,然后利用勾股定理计算出圆锥的高. 【解答】解:过O作OE⊥AB于E,∵OA=OD=60cm,∠AOB=120°, ∴∠A=∠B=30°, ∴OE=OA=30cm, ∴弧CD的长==20π, 设圆锥的底面圆的半径为r,则2πr=20π,解得r=10, ∴圆锥的高==20. 故选D. 3.如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是优弧上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是( ) A.15° B.20° C.25° D.30° 【分析】根据四边形的内角和,可得∠BOA,根据等弧所对的圆周角相等,根据圆周角定理,可得答案. 【解答】解;如图, 由四边形的内角和定理,得 ∠BOA=360°﹣90°﹣90°﹣80°=100°, 由=,得 ∠AOC=∠BOC=50°. 由圆周角定理,得 ∠ADC=∠AOC=25°, 故选:C. 4.如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为( ) A.140° B.70° C.60° D.40° 【考点】圆周角定理. 【分析】先根据四边形内角和定理求出∠DOE的度数,再由圆周角定理即可得出结论. 【解答】解:∵CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°, ∴∠DOE=180°﹣40°=140°, ∴∠P=∠DOE=70°. 故选B. 5.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm,则这块扇形铁皮的半径是( ) A.40cm B.50cm C.60cm D.80cm 【知识点】圆中的计算问题——弧长、圆锥的侧面积 【答案】A. 【解析】设这块扇形铁皮的半径为Rcm,∵圆锥的底面周长等于它的侧面展开图的弧长,∴×2πR=2π×.解得R=40. 故选择A. 6.如图,在等腰Rt△ABC中,AC=BC=,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是( ) A. B.π C. D.2 【考点】轨迹,等腰直角三角形 【答案】B 【解析】取AB的中点E,取CE的中点F,连接PE,CE,MF,则FM=PE=1,故M的轨迹为以F为圆心,1为半径的半圆弧,轨迹长为. 7.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=( ) A. B. C. D. 【考点】锐角三角函数的定义. 【分析】连接CD,可得出∠OBD=∠OCD,根据点D(0,3),C(4,0),得OD=3,OC=4,由勾股定理得出CD=5,再在直角三角形中得出利用三角函数求出sin∠OBD即可. 【解答】解:∵D(0,3),C(4,0), ∴OD=3,OC=4, ∵∠COD=90°, ∴CD==5, 连接CD,如图所示: ∵∠OBD=∠OCD, ∴sin∠OBD=sin∠OCD==. 故选:D. 8.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为( ) A.20° B.25° C.40° D.50° 【考点】切线的性质. 【分析】利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠PAO的度数,然后利用圆周角定理来求∠ABC的度数. 【解答】解:如图,∵AB是⊙O的直径,直线PA与⊙O相切于点A, ∴∠PAO=90°. 又∵∠P=40°, ∴∠∠PAO=50°, ∴∠ABC=∠PAO=25°. 故选:B. 9.如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是( ) A.25° B.40° C.50° D.65° 【考点】切线的性质;圆周角定理. 【分析】首先连接OC,由∠A=25°,可求得∠BOC的度数,由CD是圆O的切线,可得OC⊥CD,继而求得答案. 【解答】解:连接OC, ∵圆O是Rt△ABC的外接圆,∠ACB=90°, ∴AB是直径, ∵∠A=25°, ∴∠BOC=2∠A=50°, ∵CD是圆O的切线, ∴OC⊥CD, ∴∠D=90°﹣∠BOC=40°. 故选B. 10.在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形的边长均相等)现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为( ) A.E、F、G B.F、G、H C.G、H、E D.H、E、F 【考点】点与圆的位置关系. 【分析】根据网格中两点间的距离分别求出,OE,OF,OG,OH然后和OA比较大小.最后得到哪些树需要移除. 【解答】解:∵OA==, ∴OE=2<OA,所以点E在⊙O内, OF=2<OA,所以点E在⊙O内, OG=1<OA,所以点E在⊙O内, OH==2>OA,所以点E在⊙O外, 故选A 二、填空题 11.如图,四边形ABCD为⊙O的内接四边形,已知∠C=∠D,则AB与CD的位置关系是 AB∥CD . 【考点】圆内接四边形的性质. 【分析】由圆内接四边形的对角互补的性质以及等角的补角相等求解即可. 【解答】解:∵四边形ABCD为⊙O的内接四边形, ∴∠A+∠C=180° 又∵∠C=∠D, ∴∠A+∠D=180°. ∴AB∥CD. 故答案为:AB∥CD 12.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为______________. 【知识点】圆中的计算问题——扇形的计算. 【答案】25. 【解析】∵扇形ABD的弧长等于正方形两边长的和BC+DC=10,扇形ABD的半径为正方形的边长5,∴S扇形ABD=×10×5=25. 13.如图,AB是⊙O的直径,AC、BC是⊙O的弦,直径DE⊥AC于点P.若点D在优弧上,AB=8,BC=3,则DP= 5.5 . 【考点】圆周角定理;垂径定理. 【分析】解:由AB和DE是⊙O的直径,可推出OA=OB=OD=4,∠C=90°,又有DE⊥AC,得到OP∥BC,于是有△AOP∽△ABC,根据相似三角形的性质即可得到结论. 【解答】解:∵AB和DE是⊙O的直径, ∴OA=OB=OD=4,∠C=90°, 又∵DE⊥AC, ∴OP∥BC, ∴△AOP∽△ABC, ∴, 即, ∴OP=1.5. ∴DP=OP+OP=5.5, 故答案为:5.5. 14.如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC长为 2 . 【考点】三角形的外接圆与外心;圆周角定理. 【分析】连接CD,由∠ABC=∠DAC可得,得出则AC=CD,又∠ACD=90°,由等腰直角三角形的性质和勾股定理可求得AC的长. 【解答】解:连接CD,如图所示: ∵∠B=∠DAC, ∴, ∴AC=CD, ∵AD为直径, ∴∠ACD=90°, 在Rt△ACD中,AD=6, ∴AC=CD=AD=×4=2, 故答案为:2. 15.如图,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为 . 【考点】切线的性质. 【分析】过点0作OE⊥AB于点E,OF⊥BC于点F.根据切线的性质,知OE、OF是⊙O的半径;然后由三角形的面积间的关系(S△ABO+S△BOD=S△ABD=S△ACD)列出关于圆的半径的等式,求得圆的半径即可. 【解答】解:过点0作OE⊥AB于点E,OF⊥BC于点F. ∵AB、BC是⊙O的切线, ∴点E、F是切点, ∴OE、OF是⊙O的半径; ∴OE=OF; 在△ABC中,∠C=90°,AC=3,AB=5, ∴由勾股定理,得BC=4; 又∵D是BC边的中点, ∴S△ABD=S△ACD, 又∵S△ABD=S△ABO+S△BOD, ∴AB•OE+BD•OF=CD•AC,即5×OE+2×0E=2×3, 解得OE=, ∴⊙O的半径是. 故答案为:. 三、解答题 16.如图,在Rt△ABC中,∠BAC=90° (1)先作∠ACB的平分线交AB边于点P,再以点P为圆心,PA长为半径作⊙P;(要求:尺规作图,保留作图痕迹,不写作法) (2)请你判断(1)中BC与⊙P的位置关系,并证明你的结论. 【考点】直线与圆的位置关系;作图—复杂作图. 【分析】(1)根据题意作出图形,如图所示; (2)BC与⊙P相切,理由为:过P作PD⊥BC,交BC于点P,利用角平分线定理得到PD=PA,而PA为圆P的半径,即可得证. 【解答】解:(1)如图所示,⊙P为所求的圆; (2)BC与⊙P相切,理由为: 过P作PD⊥BC,交BC于点P, ∵CP为∠ACB的平分线,且PA⊥AC,PD⊥CB, ∴PD=PA, ∵PA为⊙P的半径. ∴BC与⊙P相切. 17.如图,已知四边形ABCD内接于圆O,连结BD,∠BAD=105°,∠DBC=75°. (1)求证:BD=CD; (2)若圆O的半径为3,求的长. 【考点】圆内接四边形的性质;弧长的计算. 【分析】(1)直接利用圆周角定理得出∠DCB的度数,再利用∠DCB=∠DBC求出答案; (2)首先求出的度数,再利用弧长公式直接求出答案. 【解答】(1)证明:∵四边形ABCD内接于圆O, ∴∠DCB+∠BAD=180°, ∵∠BAD=105°, ∴∠DCB=180°﹣105°=75°, ∵∠DBC=75°, ∴∠DCB=∠DBC=75°, ∴BD=CD; (2)解:∵∠DCB=∠DBC=75°, ∴∠BDC=30°, 由圆周角定理,得,的度数为:60°, 故===π, 答:的长为π. 18.如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连结BD. (1)求证:∠A=∠BDC; (2)若CM平分∠ACD,且分别交AD、BD于点M、N,当DM=1时,求MN的长. 【考点】切线的性质. 【分析】(1)由圆周角推论可得∠A+∠ABD=90°,由切线性质可得∠CDB+∠ODB=90°,而∠ABD=∠ODB,可得答案; (2)由角平分线及三角形外角性质可得∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM,根据勾股定理可求得MN的长. 【解答】解:(1)如图,连接OD, ∵AB为⊙O的直径, ∴∠ADB=90°,即∠A+∠ABD=90°, 又∵CD与⊙O相切于点D, ∴∠CDB+∠ODB=90°, ∵OD=OB, ∴∠ABD=∠ODB, ∴∠A=∠BDC; (2)∵CM平分∠ACD, ∴∠DCM=∠ACM, 又∵∠A=∠BDC, ∴∠A+∠ACM=∠BDC+∠DCM,即∠DMN=∠DNM, ∵∠ADB=90°,DM=1, ∴DN=DM=1, ∴MN==. 19.如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A. (1)判断直线MN与⊙O的位置关系,并说明理由; (2)若OA=4,∠BCM=60°,求图中阴影部分的面积. 【考点】直线与圆的位置关系;扇形面积的计算. 【分析】(1)MN是⊙O切线,只要证明∠OCM=90°即可. (2)求出∠AOC以及BC,根据S阴=S扇形OAC﹣S△OAC计算即可. 【解答】解:(1)MN是⊙O切线. 理由:连接OC. ∵OA=OC, ∴∠OAC=∠OCA, ∵∠BOC=∠A+∠OCA=2∠A,∠BCM=2∠A, ∴∠BCM=∠BOC, ∵∠B=90°, ∴∠BOC+∠BCO=90°, ∴∠BCM+∠BCO=90°, ∴OC⊥MN, ∴MN是⊙O切线. (2)由(1)可知∠BOC=∠BCM=60°, ∴∠AOC=120°, 在RT△BCO中,OC=OA=4,∠BCO=30°, ∴BO=OC=2,BC=2 ∴S阴=S扇形OAC﹣S△OAC=﹣=﹣4. 20.如图,在△ABC中,E是AC边上的一点,且AE=AB,∠BAC=2∠CBE,以AB为直径作⊙O交AC于点D,交BE于点F. (1)求证:BC是⊙O的切线; (2)若AB=8,BC=6,求DE的长. 【考点】切线的判定. 【分析】(1)由AE=AB,可得∠ABE=90°﹣∠BAC,又由∠BAC=2∠CBE,可求得∠ABC=∠ABE+∠CBE=90°,继而证得结论; (2)首先连接BD,易证得△ABD∽△ACB,然后由相似三角形的对应边成比例,求得答案. 【解答】(1)证明:∵AE=AB, ∴△ABE是等腰三角形, ∴∠ABE=(180°﹣∠BAC=)=90°﹣∠BAC, ∵∠BAC=2∠CBE, ∴∠CBE=∠BAC, ∴∠ABC=∠ABE+∠CBE=(90°﹣∠BAC)+∠BAC=90°, 即AB⊥BC, ∴BC是⊙O的切线; (2)解:连接BD, ∵AB是⊙O的直径, ∴∠ADB=90°, ∵∠ABC=90°, ∴∠ADB=∠ABC, ∵∠A=∠A, ∴△ABD∽△ACB, ∴=, ∵在Rt△ABC中,AB=8,BC=6, ∴AC==10, ∴, 解得:AD=6.4, ∵AE=AB=8, ∴DE=AE﹣AD=8﹣6.4=1.6. 21.如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连结EF. (1)求证:∠1=∠F. (2)若sinB=,EF=2,求CD的长. 【考点】圆周角定理;解直角三角形. 【分析】(1)连接DE,由BD是⊙O的直径,得到∠DEB=90°,由于E是AB的中点,得到DA=DB,根据等腰三角形的性质得到∠1=∠B等量代换即可得到结论; (2)g根据等腰三角形的判定定理得到AE=EF=2,推出AB=2AE=4,在Rt△ABC中,根据勾股定理得到BC==8,设CD=x,则AD=BD=8﹣x,根据勾股定理列方程即可得到结论. 【解答】解:(1)证明:连接DE, ∵BD是⊙O的直径, ∴∠DEB=90°, ∵E是AB的中点, ∴DA=DB, ∴∠1=∠B, ∵∠B=∠F, ∴∠1=∠F; (2)∵∠1=∠F, ∴AE=EF=2, ∴AB=2AE=4, 在Rt△ABC中,AC=AB•sinB=4, ∴BC==8, 设CD=x,则AD=BD=8﹣x, ∵AC2+CD2=AD2, 即42+x2=(8﹣x)2, ∴x=3,即CD=3. 22.如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H. (1)求证:CD是半圆O的切线; (2)若DH=6﹣3,求EF和半径OA的长. 【分析】(1)连接OB,根据已知条件得到△AOB是等边三角形,得到∠AOB=60°,根据圆周角定理得到∠AOF=∠BOF=30°,根据平行线的性质得到OC⊥CD,由切线的判定定理即可得到结论; (2)根据平行线的性质得到∠DBC=∠EAO=60°,解直角三角形得到BD=BC=AB,推出AE=AD,根据相似三角形的性质得到,求得EF=2﹣,根据直角三角形的性质即可得到结论. 【解答】解:(1)连接OB, ∵OA=OB=OC, ∵四边形OABC是平行四边形, ∴AB=OC, ∴△AOB是等边三角形, ∴∠AOB=60°, ∵∠FAD=15°, ∴∠BOF=30°, ∴∠AOF=∠BOF=30°, ∴OF⊥AB, ∵CD∥OF, ∴CD⊥AD, ∵AD∥OC, ∴OC⊥CD, ∴CD是半圆O的切线; (2)∵BC∥OA, ∴∠DBC=∠EAO=60°, ∴BD=BC=AB, ∴AE=AD, ∵EF∥DH, ∴△AEF∽△ADH, ∴, ∵DH=6﹣3, ∴EF=2﹣, ∵OF=OA, ∴OE=OA﹣(2﹣), ∵∠AOE=30°, ∴==, 解得:OA=2. 23.如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C. (1)求证:∠ACD=∠B; (2)如图2,∠BDC的平分线分别交AC,BC于点E,F; ①求tan∠CFE的值; ②若AC=3,BC=4,求CE的长. 【考点】切线的性质. 【分析】(1)利用等角的余角相等即可证明. (2)①只要证明∠CEF=∠CFE即可. ②由△DCA∽△DBC,得===,设DC=3k,DB=4k,由CD2=DA•DB,得9k2=(4k﹣5)•4k,由此求出DC,DB,再由△DCE∽△DBF,得=,设EC=CF=x,列出方程即可解决问题. 【解答】(1)证明:如图1中,连接OC. ∵OA=OC, ∴∠1=∠2, ∵CD是⊙O切线, ∴OC⊥CD, ∴∠DCO=90°, ∴∠3+∠2=90°, ∵AB是直径, ∴∠1+∠B=90°, ∴∠3=∠B. (2)解:①∵∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB, ∵∠CDE=∠FDB,∠ECD=∠B, ∴∠CEF=∠CFE,∵∠ECF=90°, ∴∠CEF=∠CFE=45°, ∴tan∠CFE=tan45°=1. ②在RT△ABC中,∵AC=3,BC=4, ∴AB==5, ∵∠CDA=∠BDC,∠DCA=∠B, ∴△DCA∽△DBC, ∴===,设DC=3k,DB=4k, ∵CD2=DA•DB, ∴9k2=(4k﹣5)•4k, ∴k=, ∴CD=,DB=, ∵∠CDE=∠BDF,∠DCE=∠B, ∴△DCE∽△DBF, ∴=,设EC=CF=x, ∴=, ∴x=. ∴CE=. 24.如图,在△AOB中,∠AOB为直角,OA=6,OB=8,半径为2的动圆圆心Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度/秒的速度匀速运动,设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连结CD、QC. (1)当t为何值时,点Q与点D重合? (2)当⊙Q经过点A时,求⊙P被OB截得的弦长. (3)若⊙P与线段QC只有一个公共点,求t的取值范围. 【考点】圆的综合题. 【分析】(1)由题意知CD⊥OA,所以△ACD∽△ABO,利用对应边的比求出AD的长度,若Q与D重合时,则,AD+OQ=OA,列出方程即可求出t的值; (2)由于0<t≤5,当Q经过A点时,OQ=4,此时用时为4s,过点P作PE⊥OB于点E,利用垂径定理即可求出⊙P被OB截得的弦长; (3)若⊙P与线段QC只有一个公共点,分以下两种情况,①当QC与⊙P相切时,计算出此时的时间;②当Q与D重合时,计算出此时的时间;由以上两种情况即可得出t的取值范围. 【解答】解:(1)∵OA=6,OB=8, ∴由勾股定理可求得:AB=10, 由题意知:OQ=AP=t, ∴AC=2t, ∵AC是⊙P的直径, ∴∠CDA=90°, ∴CD∥OB, ∴△ACD∽△ABO, ∴, ∴AD=, 当Q与D重合时, AD+OQ=OA, ∴+t=6, ∴t=; (2)当⊙Q经过A点时,如图1, OQ=OA﹣QA=4, ∴t==4s, ∴PA=4, ∴BP=AB﹣PA=6, 过点P作PE⊥OB于点E,⊙P与OB相交于点F、G, 连接PF, ∴PE∥OA, ∴△PEB∽△AOB, ∴, ∴PE=, ∴由勾股定理可求得:EF=, 由垂径定理可求知:FG=2EF=; (3)当QC与⊙P相切时,如图2, 此时∠QCA=90°, ∵OQ=AP=t, ∴AQ=6﹣t,AC=2t, ∵∠A=∠A, ∠QCA=∠ABO, ∴△AQC∽△ABO, ∴, ∴, ∴t=, ∴当0<t≤时,⊙P与QC只有一个交点, 当QC⊥OA时, 此时Q与D重合, 由(1)可知:t=, ∴当<t≤5时,⊙P与QC只有一个交点, 综上所述,当,⊙P与QC只有一个交点,t的取值范围为:0<t≤或<t≤5.查看更多