- 2021-05-13 发布 |
- 37.5 KB |
- 13页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
宜昌市2016年中考数学卷
2016年湖北省宜昌市初中毕业生学业考试 数 学 试 题 本试卷共24小题,满分120分,考试时间120分钟. 注意事项: 1.本试卷分试题卷和答题卡两部分,请将答案答在答题卡上每题对应的答题区域内,写在试题卷上无效. 2.考试结束,请将本试题卷和答题卡一并上交. 3.参考公式:弧长; 二次函数y=ax2+bx+c图象的顶点坐标是,对称轴为. 一、选择题(下列各小题中,只有一个选项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号. 每小题3分,计45分) 1.如果“盈利5%”记作+5%,那么—3%表示( ). A.亏损3% B.亏损8% C.盈利2% D.少赚2% 2.下列各数:1.414,,,0,其中是无理数的是( ). A.1.414 B. C. D.0 3.如下左图,若要添加一条线段,使之既是轴对称图形又是中心对称图形,正确的添加位置是( ). (第3题) A. B. C. D. 4.把改写成科学计数法的形式,正确的是( ). A.2.2×103 B. 2.2×104 C.2.2×105 D.2.2×106 5.设四边形的内角和等于,五边形的外角和等于,则与的关系是( ). A. B. C. D. 6.在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法来估算正面朝上的概率,其实验次数分别为10次,50次,100次,200次,其中实验相对科学的是( ). A.甲组 B.乙组 C.丙组 D.丁组 7.将一根圆柱形的空心钢管任意放置,它的主视图不可能是( ). A. B. C. D. 8.分式方程的解为 ( ). A. B. C. D. 9.已知M,N,P,Q四点的位置如图所示,下列结论中,正确的是( ). A. B. C.比大 D.与互补 10.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( ). A.垂线段最短 B.经过一点有无数条直线 C.经过两点,有且仅有一条直线 D.两点之间,线段最短 11.在6月26日“国际禁毒日”来临之际,华明中学围绕“珍爱生命,远离毒品”主题,组织师生到当地戒毒所开展相关问题的问卷调查活动.其中“初次吸毒时的年龄”在17至21岁的统计结果如图所示,则这些年龄的众数是( ). A. 18 B.19 C.20 D.21 12.任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示,若连接EH,HF,FG,GE,则下列结论中,不一定正确的是( ). A.△EGH为等腰三角形 B.△EGF为等边三角形 C.四边形EGFH为菱形 D.△EHF为等腰三角形 (第13题) 13.在公园的O处附近有E,F,G,H四棵树,位置如图所示(图中小正方形的边长均相等),现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E,F,G,H四棵树中需要被移除的为( ). A.E,F,G B.F,G,H C.G,H ,E D.H,E,F 14.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:,,,,,分别对应下列六个字:昌、爱、我、宜、游、美.现将因式分解,结果呈现的密码信息可能是( ) . A.我爱美 B.宜昌游 C.爱我宜昌 D.美我宜昌 15.函数的图像可能是( ) . 二、解答题(将解答过程写在答题卡上指定的位置.本大题共有9小题,计75分) 16.(6分)计算:. 17.(6分)先化简,再求值:,其中. 18.(7分)杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下, 如图,AB∥OH∥CD,相邻两平行线间的距离相等.AC,BD相交于O,OD⊥CD垂足为D.已知AB=20米.请根据上述信息求标语CD的长度. (第18题) 19.(7分)如图,直线与两坐标轴分别交于A,B两点. (1)求∠ABO的度数; (2)过点A的直线l交x轴正半轴于C,AB=AC,求直线l的函数解析式. (第19题) 20.(8分)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个.食堂师傅在窗口随机发放(发放的食品价格一样).食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品. (1)按约定,“小李同学在该天早餐得到两个油饼”是 事件;(可能,必然,不可能) (2)请用列表或画树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率. 21.(8分)如图,CD是⊙O的弦,AB是直径,且CD∥AB.连接AC,AD,OD,其中AC=CD.过点B的切线交CD的延长线于E. (1)求证:DA平分∠CDO; (2)若AB=12,求图中阴影部分的周长之和(参考数据:,,). (第21题) 22.(10分)某蛋糕产销公司A 品牌产销线,2015年的销售量为9.5万份,平均每份获利1.9元,预计以后四年每年销售量按5000份递减,平均每份获利按一定百分数逐年递减;受供给侧改革的启发,公司早在2014年底就投入资金10.89万元,新增了一条B品牌产销线,以满足市场对蛋糕的多元需求.B品牌产销线2015年的销售量为1.8万份,平均每份获利3元,预计以后四年每年销售量按相同的份数递增,且平均每份获利按上述递减百分数的2倍逐年递增;这样,2016年AB两品牌产销线销售量总和将达到11.4万份,B品牌产销线2017年销售获利恰好等于当初的投入资金数. (1)求A品牌产销线2018年的销售量; (2)求B品牌产销线2016年平均每份获利增长的百分数. 23.(11分)在 △ABC中,AB=6,AC=8,BC=10.D是△ABC内部或BC边上的一个动点(与B,C不重合).以D为顶点作△DEF,使△DEF∽△ABC(相似比), EF∥BC. (1)求∠D的度数; (2)若两三角形重叠部分的形状始终是四边形AGDH, ①如图1,连接GH,AD,当GH⊥AD时,请判断四边形AGDH的形状,并证明; ②当四边形AGDH的面积最大时,过A作AP⊥EF于P,且AP=AD,求的值. (第23题图1) (第23题图2供参考用) (第23题图3供参考用) 24.(12分)已知抛物线(为常数,), A(,),B(,),C(,)是该抛物线上不同的三点.现将抛物线的对称轴绕坐标原点O逆时针旋转90°得到直线,过抛物线顶点P作PH⊥于H. (1)用含的代数式表示抛物线的顶点坐标; (2)若无论取何值,抛物线与直线(为常数)有且仅有一个公共点,求的值; (3)当时,试比较,,之间的大小. (第24题)查看更多