动点问题初三数学中考热门题型

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

动点问题初三数学中考热门题型

动点问题 题型方法归纳 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。)‎ 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、‎ 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。‎ 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。‎ 一、三角形边上动点 ‎1、直线与坐标轴分别交于两点,动点同时从点出发,同时到达点,运动停止.点沿线段 运动,速度为每秒1个单 位长度,点沿路线→→运动.‎ ‎(1)直接写出两点的坐标;‎ ‎(2)设点的运动时间为秒,的面积为,求出与之间 的函数关系式;‎ ‎(3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标.‎ 解:1、A(8,0) B(0,6)‎ ‎2、当0<t<3时,S=t2‎ ‎ 当3<t<8时,S=3/8(8-t)t 如图,AB是⊙O的直径,弦BC=2cm,‎ ‎∠ABC=60º.‎ ‎(1)求⊙O的直径;‎ ‎(2)若D是AB延长线上一点,连结CD,当BD长为多少时,CD与⊙O相切;‎ ‎(3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速度从B点出发沿BC方向运动,设运动时间为,连结EF,当为何值时,△BEF为直角三角形.‎ ‎3、如图,已知抛物线经过点,抛物线的顶点为,过作射线.过顶点平行于轴的直线交射线于点,在轴正半轴上,连结.‎ ‎(1)求该抛物线的解析式;‎ ‎(2)若动点从点出发,以每秒1个长度单位的速度沿射线运动,设点运动的时间为.问当为何值时,四边形分别为平行四边形?直角梯形?等腰梯形?‎ ‎(3)若,动点和动点分别从点和点同时出发,分别以每秒1个长度单位和2个长度单位的速度沿和运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为,连接,当为何值时,四边形的面积最小?并求出最小值及此时的长.‎ 二、 特殊四边形边上动点 ‎4、如图所示,菱形的边长为6厘米,.从初始时刻开始,点、同时从点出发,点以1厘米/秒的速度沿的方向运动,点以2厘米/秒的速度沿的方向运动,当点运动到点时,、两点同时停止运动,设、运动的时间为秒时,与重叠部分的面积为平方厘米(这里规定:点和线段是面积为的三角形),解答下列问题: ‎ ‎(1)点、从出发到相遇所用时间是 秒;‎ ‎(2)点、从开始运动到停止的过程中,当是等边三角形时的值是 秒;‎ ‎(3)求与之间的函数关系式.‎ 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.‎ ‎(1)求直线AC的解析式;‎ ‎(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);‎ ‎(3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.‎ ‎6、如图,在平面直角坐标系中,点A(,0),B(3,2),C(0,2).动点D以每秒1个单位的速度从点0出发沿OC向终点C运动,同时动点E以每秒2个单位的速度从点A出发沿AB向终点B运动.过点E作EF上AB,交BC于点F,连结DA、DF.设运动时间为t秒.‎ ‎(1)求∠ABC的度数;‎ ‎(2)当t为何值时,AB∥DF;‎ ‎(3)设四边形AEFD的面积为S.‎ ‎①求S关于t的函数关系式;‎ ‎②若一抛物线y=x2+mx经过动点E,当S<2时,求m的取值范围(写出答案即可).‎ ‎7、已知:如图,在平面直角坐标系中,四边形ABCO是菱形,且 ‎∠AOC=60°,点B的坐标是,点P从点C开始以每秒1个单位长度的速度在线段CB上向点B移动,同时,点Q从点O开始以每秒a(1≤a≤3)个单位长度的速度沿射线OA方向移动,设秒后,直线PQ交OB于点D.‎ ‎(1)求∠AOB的度数及线段OA的长;‎ ‎(2)求经过A,B,C三点的抛物线的解析式;‎ ‎(3)当时,求t的值及此时直线PQ的解析式;‎ ‎(4)当a为何值时,以O,P,Q,D为顶点的三角形与相似?当a 为何值时,以O,P,Q,D为顶点的三角形与不相似?请给出你的结论,并加以证明.‎ ‎8、已知:如图,在直角梯形中,,以为原点建立平面直角坐标系,三点的坐标分别为,点为线段的中点,动点从点出发,以每秒1个单位的速度,沿折线的路线移动,移动的时间为秒.‎ ‎(1)求直线的解析式;‎ ‎(2)若动点在线段上移动,当为何值时,四边形的面积是梯形 面积的?‎ ‎(3)动点从点出发,沿折线的路线移动过程中,设的面积为,请直接写出与的函数关系式,并指出自变量的取值范围;‎ ‎(4)当动点在线段上移动时,能否在线段上找到一点,使四边形为矩形?请求出此时动点的坐标;若不能,请说明理由.‎ ‎9、如图,在平面直角坐标系xoy中,抛物线与x轴的交点为点A,与y轴的交点为点B. 过点B作x轴的平行线BC,交抛物线于点C,连结AC.现有两动点P,Q分别从O,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒)‎ ‎(1)求A,B,C三点的坐标和抛物线的顶点的坐标;‎ ‎(2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程;‎ ‎(3)当0<t<时,△PQF的面积是否总为定值?若是,求出此定值, 若不是,请说明理由; ‎ ‎(4)当t为何值时,△PQF为等腰三角形?请写出解答过程.‎ 二、 直线上动点 ‎8、如图,二次函数()的图象与轴交于两点,与轴相交于点.连结两点的坐标分别为、,且当和时二次函数的函数值相等.‎ ‎(1)求实数的值;‎ ‎(2)若点同时从点出发,均以每秒1个单位长度的速度分别沿边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为秒时,连结,将沿翻折, 点恰好落在边上的处,求的值及点的坐标; ‎ ‎(3)在(2)的条件下,二次函数图象的对称轴上是否存在点,使得以为项点的三角形与相似?如果存在,请求出点的坐标;如果不存在,请说明理由.‎ ‎9、如图,已知直线与轴交于点A,与轴交于点D,抛物线与直线交于A、E两点,与轴交于B、C两点,且B点坐标为 (1,0)。‎ ‎⑴求该抛物线的解析式;‎ ‎⑵动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标P。‎ ‎⑶在抛物线的对称轴上找一点M,使的值最大,求出点M的坐标。‎ ‎10、如图①,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4), 点C在第一象限.动点P在正方形 ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.‎ ‎(1)当P点在边AB上运动时,点Q的横坐标(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;‎ ‎(2)求正方形边长及顶点C的坐标;‎ ‎(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;‎ ‎(4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.‎ ‎11、如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为 ‎,,,延长AC到点D,使CD=,过点D作DE∥AB交BC的延长线于点E.‎ ‎(1)求D点的坐标;‎ ‎(2)作C点关于直线DE的对称点F,分别连结DF、EF,若过B点的直线 将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式;‎ ‎(3)设G为y轴上一点,点P从直线与y轴的交点出发,先沿y轴到达G点,再沿GA到达A点,若P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短。(要求:简述确定G点位置的方法,但不要求证明)‎ ‎12、‎ 已知∠ABC=90°,AB=2,BC=3,AD∥BC,P为线段BD上的动点,点Q在射线AB上,且满足(如图1所示).‎ ‎(1)当AD=2,且点与点重合时(如图2所示),求线段的长;‎ ‎(2)在图8中,联结.当,且点在线段上时,设点之间的距离为,,其中表示△APQ的面积,表示的面积,求关于的函数解析式,并写出函数定义域; ‎ ‎(3)当,且点在线段的延长线上时(如图3所示),求的大小.‎ ‎13、‎ 如图,在Rt△ABC中,AB=AC,P是边AB(含端点)上的动点.过P作BC的垂线PR,R为垂足,∠PRB的平分线与AB相交于点S,在线段RS上存在一点T,若以线段PT为一边作正方形PTEF,其顶点E,F恰好分别在边BC,AC上.‎ ‎(1)△ABC与△SBR是否相似,说明理由; ‎ ‎(2)请你探索线段TS与PA的长度之间的关系;‎ ‎(3)设边AB=1,当P在边AB(含端点)上运动时,请你探索正方形PTEF的面积y的最小值和最大值.‎ ‎14、如图,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).‎ ‎(1)当t = 2时,AP = ,点Q到AC的距离是 ;‎ ‎(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)‎ ‎(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值.若不能,请说明理由;‎ ‎(4)当DE经过点C 时,请直接写出t的值. ‎ ‎15、已知二次函数()的图象经过点,,,直线()与轴交于点.‎ ‎(1)求二次函数的解析式;‎ ‎(2)在直线()上有一点(点在第四象限),使得为顶点的三角形与以为顶点的三角形相似,求点坐标(用含的代数式表示);‎ ‎(3)在(2)成立的条件下,抛物线上是否存在一点,使得四边形为平行四边形?若存在,请求出的值及四边形的面积;若不存在,请说明理由.‎ 二、 抛物线上动点 ‎16、如图①, 已知抛物线(a≠0)与轴交于点A(1,0)和点B (-3,0),与y轴交于点C.‎ ‎(1) 求抛物线的解析式;‎ ‎(2) 设抛物线的对称轴与轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.‎ ‎ (3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.‎ ‎17、正方形在如图所示的平面直角坐标系中,在轴正半轴上,在轴的负半轴上,交轴正半轴于交轴负半轴于,,抛物线过三点. ‎ ‎(1)求抛物线的解析式;‎ ‎(2)是抛物线上间的一点,过点作平行于轴的直线交边于,交 所在直线于,若,则判断四边形的形状; ‎ ‎(3)在射线上是否存在动点,在射线上是否存在动点,使得且,若存在,请给予严格证明,若不存在,请说明理由.‎
查看更多

相关文章

您可能关注的文档