- 2021-05-10 发布 |
- 37.5 KB |
- 4页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考化简求值专题复习
中考化简求值专题 一、 考点分析 1、分式的化简 2、分式的混合运算 3、分式的求值 4、不等式的解法 5、二次根式的化简 (注意:此类要求的题目,如果没有化简,直接代入求值一分也不得。) 二、 解题基本方法 1、分解因式: (1)提公因式法: (2)公式法: 1)平方差公式: 2)完全平方公式: 2、分式的通分:异分母的分式相加减关键在于找最简公分母再通分。 (温馨提醒:有时候通分需要把其中两项看成整体要简单一些) 3、不等式的解法:利用数轴和口诀法确定不等式的解集 4、二次根式的化简:将结果化成最简二次根式 三、解题技巧: 1、要善于观察题目的特征,若分子,分母是多项式则应先将其分解因式,再把除法转化为乘法,再约分化简。 2、注意规范解题格式: 如“解:原式=”和“当......时,原式=”的写出等,中考注重过程评价,通常算对一个就给一个的分。 四、 例题讲解 例1、先化简,再求值: 其中a,b满足 答案: 变式练习1: 先化简,再求值: 其中 是不等式 的负整数解。 答案: 变式练习2:先化简,再求值: ,其中x是不等式组的整数解. , 课后作业: 1. 先化简,再求值:,其中 2. 先化简,再求值:,其中x满足x2-x-1=0. 1. 先化简,再求值:,其中x是不等式3(x+4)﹣6≥0的负整数解. 4.先化简,再求值:,其中x是不等式组的整数解. 5.先化简分式:,然后在0,1,2,3中选一个你认为合适的的值,代入求值。查看更多