- 2021-05-10 发布 |
- 37.5 KB |
- 12页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
南京市联合体中考二模数学试题及答案Word版
2015年中考模拟试卷(二) 数 学 化工园 雨花 栖霞 浦口四区联合体 注意事项: 1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效. 2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上. 3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效. 4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚. 一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.﹣的相反数是 ( ▲ ) A. -2 B.2 C. - D. 2.下列计算正确的是( ▲ ) A. a3+a4=a7 B.2a3•a4=2a7 C.(2a4)3=8a7 D.a8÷a2=a4 3.为调查某班学生每天使用零花钱的情况,张华随机调查了20名同学,结果如下表: 每天使用零花钱(单位:元) 1 2 3 4 5 人数 1 3 6 5 5 则这20名同学每天使用的零花钱的众数和中位数分别是( ▲ ) A. 3,3 B. 3,3.5 C. 3.5,3.5 D. 3.5,3 4.小张同学的座右铭是“态度决定一切”,他将这几个字写在一个正方体纸盒的每个面上,其平面展开图如图所示,那么在该正方体中, 和“一”相对的字是( ▲ ) A. 态 B. 度 C. 决 D. 切 (第6题) B A D C E F (第5题) A B C O (第4题) 5. 如图,⊙O是△ ABC的外接圆,∠OBC=42°,则∠A的度数是( ▲ ) A. 42° B. 48° C. 52° D. 58° 6.如图,在矩形ABCD中,AB=3,BC=5,以B为圆心BC为半径画弧交AD于点E,连接CE,作BF⊥CE,垂足为F,则tan∠FBC的值为( ▲ ) A. B. C. D. 二、填空题(本大题共10小题,每小题2分,共20分,请在答题卡指定区域内作答.) 7.代数式有意义,则 x的取值范围是 ▲ . 8. 分解因式:a3-4a= ▲ . 9. 计算-2cos30°-|1-|= ▲ . 10. 反比例函数y=的图象经过点(1,6)和(m,-3),则m= ▲ . 11. 如图,在菱形ABCD中,AC=2,∠ABC=60°,则BD= ▲ . B O A 1 C D (第12题) 12. 如图,在⊙O中, AO∥CD, ∠1=30°,劣弧AB的长为3300千米,则⊙O的周长用科学计数法表示为 ▲ 千米. A B C D (第11题) 13.某商品原价100元,连续两次涨价后,售价为144元,若平均增长率为x,则x= ▲ . 14.直角坐标系中点A坐标为(5,3),B坐标为(1,0),将点A绕点B逆时针旋转90°得到点C,则点C的坐标为 ▲ . (第15题) 15.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象可知:方程ax2+bx+c=k有两个不相等的实数根,则k的取值范围为 ▲ . O (第16题) 16.如图,在半径为2的⊙O中,两个顶点重合的内接正四边形与正六边形,则阴影部分的面积为 ▲ . 三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(6分)解方程组 18.(6分)化简:(-x)÷. 19.(8分)为了备战初三物理、化学实验操作考试,某校对初三学生进行了模拟训练.物理、化学各有3个不同的操作实验题目,物理用番号①、②、③代表,化学用字母a、b、c表示.测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定. (1)小张同学对物理的①、②和化学的b、c实验准备得较好.请用树形图或列表法求他两科都抽到准备得较好的实验题目的概率; (2)小明同学对物理的①、②、③和化学的a实验准备得较好.他两科都抽到准备得较好的实验题目的概率为 ▲ . 20. (8分)据报道,历经一百天的调查研究,南京PM 2.5源解析已经通过专家论证.各种调查显示,机动车成为PM 2.5的最大来源,一辆车每行驶20千米平均向大气里排放0.035千克污染物.校环保志愿小分队从环保局了解到南京100天的空气质量等级情况,并制成统计图和表: 2014年南京市100天空气质量等级天数统计图 空气质量等级 优 良 轻度污染 中度污染 重度污染 严重污染 天数(天) 10 a 12 8 25 b 2014年南京市100天空气质量等级天数统计表 优 良 轻度 重度 严重 10% 25% 12% 8% n° 25% 中度 (1) 表中a= ▲ ,b= ▲ ,图中严重污染部分对应的圆心角n= ▲ °. (2)请你根据“2014年南京市100天空气质量等级天数统计表”计算100天内重度污染和严重污染出现的频率共是多少? (3)小明是社区环保志愿者,他和同学们调查了机动车每天的行驶路程,了解到每辆车每天平均出行25千米.已知南京市2014年机动车保有量已突破200万辆,请你通过计算,估计2014年南京市一天中出行的机动车至少要向大气里排放多少千克污染物? 21.(8分)如图, 在□ABCD中,E、F、G、H分别为AB、BC、CD、AD的中点,AF与EH交于点M,FG与CH交于点N. (1)求证:四边形MFNH为平行四边形; (2)求证:△AMH≌△CNF. A B C D F G E H M N 22. (8分)端午节期间,某食堂根据职工食用习惯,购进甲、乙两种粽子260个,其中甲种粽子花费300圆,乙种粽子花费400元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个? 23.(8分)如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30º,在A、C之间选择一点B (A、B、C三点在同一直线上),用测角仪测得塔顶D的仰角为75º,且AB间距离为40m. (1)求点B到AD的距离; (2)求塔高CD(结果用根号表示). A B C D (第23题) 30° 75° 24.(8分)小林家、小华家、图书馆依次在一条直线上.小林、小华两人同时各自从家沿直线匀速步行到图书馆借阅图书,已知小林到达图书馆花了20分钟.设两人出发x(分钟)后,小林离小华家的距离为y(米),y与x的函数关系如图所示. (1)小林的速度为 ▲ 米/分钟 ,a= ▲ ,小林家离图书馆的距离为 ▲ 米; (2)已知小华的步行速度是40米/分钟,设小华步行时与自己家的距离为y1(米),请在图中画出y1(米)与x(分钟 )的函数图象; (3)小华出发几分钟后两人在途中相遇? 第题 (第24题) x(分钟) y(米) 4 20 240 O a 25.(8分)施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系(如图①所示). (1)求出这条抛物线的函数表达式,并写出自变量x的取值范围; (2)隧道下的公路是双向行车道(正中间有一条宽1米的隔离带),其中的一条行车道能否行驶宽2.5米、高5米的特种车辆?请通过计算说明; (第25题) 26. (10分)如图,已知△ABC,AB=6、AC=8,点D是BC边上一动点,以AD为直径的⊙O分别交AB、AC于点E、F. (1)如图①若∠AEF=∠C,求证:BC与⊙O相切; (2)如图②,若∠BAC=90°,BD长为多少时,△AEF与△ABC相似. 图① A D B C E F O D B O C F A E A B C 备用 图② 27. (10分)已知直角△ABC,∠ACB=90°,AC=3,BC=4,D为AB边上一动点,沿EF折叠,点C与点D重合,设BD的长度为m. (1)如图①,若折痕EF的两个端点E、F在直角边上,则m的范围为 ▲ ; (2)如图②,若m等于2.5,求折痕EF的长度; (3)如图③,若m等于,求折痕EF的长度. D F A C D B E F A C B A C B 图② 图③ 图① D E F E 2015中考数学模拟试卷(二)答案 一、选择题(本大题共6小题,每小题2分,共12分.) 题号 1 2 3 4 5 6 答案 D B B A B D 二、填空题(本大题共10小题,每小题2分,共20分.) 7.x>1 8. a(a-2)(a+2) 9. +1 10. ﹣2 11. 2 12.3.96×104 13. (﹣2,4) 14.0.2 15. k<2 16. 6-2 三、解答题(本大题共11小题,共88分.) 17. 解: ①×2得:4x+6y=﹣10③ ②×3得:9x-6y=36 ④ ③+④得:13x=26 解得: x=2········································································································3分 把x=2代入①得y=﹣3····················································································5分 所以方程组的解为·················································································6分 18.解原式=[-]÷·············································································1分 =×·····························································································2分 =×··································································································3分 =×···················································································4分 =-x(x-1) ··············································································································5分 =﹣x2+x ················································································································6分 19. (1)画图或列表正确·····································································································4分 共有9种等可能结果,期中两科都满意的结果有4种··································································5分 P(两科都满意)=.·········································································································6分 (2)···························································································································8分 20. (1)25;20;72°······································································································3分 (2)45% ···············································································································5分 (3)200×0.035×10000×=87500(千克)···········································································8分 21. (1)证明:连接BD,∵E、F、G、H分别为AB、BC、CD、AD的中点, ∴EH为△ABD的中位线,∴EH∥BD. 同理FG∥BD. ∴EH∥FG·······················································································································2分 在□ABCD中 ∴AD∥=BC, ∵H为AD的中点AH=AD, ∵F为BC的中点FC=BC, ∴AH∥=FC ∴四边形AFCH为平行四边形, ∴AF∥CH·······················································································································4分 又∵EH∥FG ∴四边形MFNH为平行四边形···························································································5分 (2)∵四边形AFCH为平行四边形 ∴∠FAD=∠HCB ···········································································································6分 ∵EH∥FG,∴∠AMH=∠AFN ∵AF∥CH ∴∠AFN=∠CNF ∴∠AMH=∠CNF············································································································7分 又∵AH=CF ∴△AMH≌△CNF·············································································································8分 22.解:设乙种粽子的单价是x元,则甲种粽子的单价为(1+20%)x元, 由题意得, +=260,···················································································4分 解得:x=2.5,·················································································5分 经检验:x=2.5是原分式方程的解,························································································6分 (1+20%)x=3, 则买甲粽子为: =100个,乙粽子为:=160个.················································7分 答:乙种粽子的单价是2.5元,甲、乙两种粽子各购买100个、160个.········································8分 23. (1)作BE⊥AD,垂足为E, A B C D (第23题) 30° 75° E 在Rt△AEB中,sinA=, =,BE=20················3分 (2)∠DBC是△ABD的外角 ∠ADB=∠DBC-∠A=45°,···············4分 在Rt△DEB中,tan∠EDB= ,1=, ED=20·············································5分 在Rt△AEB中,cos∠EAB= , EA=20······························6分 AD=ED+ EA=20+20························································································7分 在Rt△ACD中,sin∠DAC= , EA=10+10·····················································8分 24.(1)60;960;1200;····························3分 (2)如图略(以(0,0)、(24,960)为端点的线段),····························5分 (3)解法一:由题意得60x-240=40x,x=12,小华出发12分钟后两人在途中相遇.························8分 解法二:设小林在4~20分钟的函数表达式为y=kx+b, 则,∴k=60,b=-240,下同解法一··········8分 25.解:(1)设抛物线的函数表达式为y=a(x-6)2+6,∵图像过点(0,0)∴a =-,…………………2分 ∴y=- (x-6)2+6=-x2+2x,…………………3分 0≤x≤12.…………………4分 (2)当x=3时,y=-×9+2×3=4.5.…………………6分 ∵4.5<5,∴不能通过.…………………8分 26.(1)证明:连接DF,在⊙O中∠AEF=∠ADF····························1分 又∵∠AEF=∠C∴∠ADF=∠C····························2分 ∵AD为直径,∴∠AFD=90°∴∠CFD=90°∴∠C+∠CDF=90° ∴∠ADF+∠CDF=90°∴∠ADC=90°····························3分 又∵AD为直径∴BC与⊙O相切. ····························4分 (2)情况一:若△AEF∽△ACB,则∠AEF=∠C,由(1)知BC与⊙O相切. ∴BD=3.6···············7分 情况二:若△AEF∽△ABC ∴∠AEF=∠B,∴EF∥BC, ∵∠EAF为直角,∴EF为直径,∴△AEO∽△ABD, ∴===,∴BD=2EO=EF ∵EF∥BC∴△AEF∽△ABC∴==,即BD=2EO=EF=BC=5……………………10分 27.解:(1)2≤m≤4;…………………2分 (2)方法一、∵∠ACB=90°,AC=3,BC=4,∴AB=5,∵BD=2.5,∴AD=DB=CD=2.5, ∵点C与点D关于对称,∴DE=CE,CF=DF,∴∠CAD=∠ECD=∠EDC, ∴△ACD∽△CDE, ∴=,即=, ∴CE=;同理CF= ;∴EF=.…………………6分 方法二、作DG⊥BC,垂足为G,连接DF,△BGD∽△BCA,∴== ∴DG=,CG=GB=2 在Rt△FDG中,FG2+DG2=DF2,(2-DF)2+1.52=DF2,解得DF=,CF=DF=…………………4分 ∵∠CEF+∠ECD=90°,∠DCF+∠ECD=90°,∴∠CEF=∠DCF,又∵∠ECF=∠CGD=90° ∴△ECF∽△CGD∴=∴EF=.…………………6分 (3)作DG⊥BC,垂足为G,作EH⊥BC,垂足为H,连接DF,△BGD∽△BCA,∴== ∴DG=, GB=∴CG= 在Rt△FDG中,FG2+DG2=DF2,(-DF)2+()2=DF2,解得DF=,CF=DF=……………8分 易证∠HEF=∠DCG,又∵∠EHF=∠DGC=90° ∴△EHF∽△CGD∴=∴==,设FH=x,则EH=3x, ∵EH∥AC,∴△EHB∽△ACB∴=∴=解得x= , ∴EF=FH=…………10分 D E G F A C D B E F A C B A C B 备用 备用 图① D E F H G查看更多