2016中考数学应用题汇编及答案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2016中考数学应用题汇编及答案

中考应用题 大题题型汇总 ‎1.我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量 x的取值范围;‎ ‎(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少? ‎ ‎2.湿地风景区特色旅游项目:水上游艇.旅游人员消费后风景区可盈利10元/人,每天消费人员为500人.为增加盈利,准备提高票价,调查发现,在其他条件不变的情况下,票价每涨1元,消费人员就减少 20人.‎ ‎(1)现该项目要保证每天盈利6000元,同时又要旅游者得到实惠,那么票价应涨价多少元?‎ ‎(2)若单纯从经济角度看,票价涨价多少元,能使该项目获利最多?‎ ‎3.临近端午节,某食品店每天卖出300只粽子,卖出一只粽子的利润为1元.调查发现,零售单价每降0.1元,每天可多卖出100只粽子.为了使每天获得的利润更多,该店决定把零售单价下降m(040),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:‎ ‎(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.‎ ‎(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?‎ 销售单价(元)‎ x 销售量y(件)‎ ‎1000﹣10x ‎20.某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.‎ ‎(1)求这两种品牌计算器的价格;‎ ‎(2)学校毕业前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售.设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;‎ ‎(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.‎ ‎21.甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用l0天.且甲队单独施工45天和乙队单独施工30天的工作量相同.‎ ‎ (1)甲、乙两队单独完成此项任务各需多少天?‎ ‎ (2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队单独继续施工,为了不影响工程进度.甲队的工作效率提高到原来的2倍.要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?‎ ‎22某公司为了更好得节约能源,决定购买一批节省能源的10台新机器。现有甲、乙两种型号的设备,其中每台的价格、工作量如下表.经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台甲型设备比购买3台乙型设备少6万元.‎ ‎(1)求a, b的值;‎ ‎(2)经预算:该公司购买的节能设备的资金不超过110万元,请列式解答有几种购买方案可供选择;‎ ‎(3)在(2)的条件下,若每月要求产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.‎ ‎23.某校校园超市老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的2倍,考虑各种因素,预计购进乙品牌文具盒的数量y(个)与甲品牌文具盒的数量x(个)之间的函数关系如图所示.当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200元.‎ ‎(1)根据图象,求y与x之间的函数关系式;(2)求甲、乙两种品牌的文具盒进货单价;‎ ‎(3)若该超市每销售1个甲种品牌的文具盒可获利4元,每销售1个乙种品牌的文具盒可获利9元,根据学生需求,超市老板决定,准备用不超过6300元购进甲、乙两种品牌的文具盒,且这两种品牌的文具盒全部售出后获利不低于1795元,问该超市有几种进货方案?哪种方案能使获利最大?最大获利为多少元?‎ ‎24.2010年底某市汽车拥有量为100万辆,而截止到2012年底,该市的汽车拥有量已达到144万辆.‎ ‎(1)求2010年底至2012年底该市汽车拥有量的年平均增长率;‎ ‎(2)该市交通部门为控制汽车拥有量的增长速度,要求到2013年底全市汽车拥有量不超过155.52万辆,预计2013年报废的汽车数量是2012年底汽车拥有量的10%,求2012年底至2013年底该市汽车拥有量的年增长率要控制在什么范围才能达到要求.‎ ‎25‎ 一种产品的进价为40元,某公司在销售这种产品时,每年总开支为100万元(不含进价).经过若干年销售得知,年销售量y(万件)是销售单价x(元)的一次函数,并得到如下部分数据:‎ 销售单价(元)‎ ‎50‎ ‎60‎ ‎70‎ ‎80‎ 年销售量(万件)‎ ‎5.5‎ ‎5‎ ‎4.5‎ ‎4‎ ‎⑴ 求关于的函数关系式;‎ ‎⑵ 写出该公司销售这种产品的年利润(万元)关于销售单价(元)的函数关系式;当销售单价为何值时,年利润最大?‎ ‎60‎ ‎80‎ ‎120‎ ‎⑶ 试通过(2)中的函数关系式及其大致图象帮助该公司确定产品的销售单价范围,使年利润不低于60万元.‎ ‎26为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.‎ ‎(1)①当40≤x≤60时,y与x的函数关系式为 ;‎ ‎②当x>60时,y与x的函数关系式为 .‎ ‎(2)当销售单价定为50元时,为保证公司月利润达到5万元,该公司可安排员工多少人?‎ ‎(利润=销售额-生产成本-员工工资-其它费用).‎ ‎(3)若该公司有80名员工,则该公司最早可在多少个月后还清无息贷款?‎ ‎27某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完.该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售量x(千件)的关系为:‎ y1=‎ 若在国外销售,平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系为 ‎(1)用x的代数式表示t为:t=   ;当0<x≤4时,y2与x的函数关系为:y2=   ;当   <x<   时,y2=100;‎ ‎(2)求每年该公司销售这种健身产品的总利润w(千元)与国内销售数量x(千件)的函数关系式,并指出x的取值范围;‎ ‎(3)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大?最大值为多少?‎ ‎ ‎ ‎28某服装经销商发现某款新型运动服市场需求量较大,经过市场调查发现年销售量(件)与销售单价(元)之间存在如图所示的一次函数关系,而该服装的进价(元)与销售量(件)之间的关系如下表所示.已知每年支付员工工资和场地租金等费用总计2万元.‎ 销售数量(件)‎ ‎…‎ ‎300‎ ‎400‎ ‎500‎ ‎600‎ ‎…‎ 进货价格(元)‎ ‎…‎ ‎340‎ ‎320‎ ‎300‎ ‎280‎ ‎…‎ ‎(1)求关于的函数关系式.‎ ‎(2)写出该经销商经销这种服装的年获利(元)关于销售单价(元)的函数关系式.当销售单价为何值时,年获利最大?并求出这个最大值 ‎(3)若经销商希望该服装一年的销售获利不低于2.2万元,请你根据图象帮助确定销售单价的范围.在此情况下,要使产品销售量最大,你认为销售单价应定为多少元?‎ ‎ ‎ ‎29某农庄计划在30亩空地上全部种植蔬菜和水果,菜农小张和果农小李分别承包了种植蔬菜和水果的任务.小张种植每亩蔬菜的工资y(元)与种植面积m(亩)之间的函数关系如图4-l所示;小李种植水果所得报酬z(元)与种植面积n(亩)之间的函数关系如图4-2所示.‎ 图4-1‎ 图4-2‎ ‎(1)如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是____元,小张应得的工资总额是____元;此时,小李应得的报酬是____元;‎ ‎(2)当10
查看更多