- 2021-05-10 发布 |
- 37.5 KB |
- 6页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考复习专题——解直角三角形
中考二轮复习之——解直角三角形 特殊角的三角函数值 a sin a cos a tan a 30° 45° 1 60° 如图7-2,在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角. 铅垂线 视线 视线 水平线 仰角 俯角 图7-2 a i=h:l h l 图7-3 如图7-3,坡面的铅垂高度(h)和水平宽度(l)的比叫做坡面的坡度(或坡比),记作i,即.坡度通常写成1∶m的形式,如i=1∶6.坡面与水平面的夹角叫做坡角,记作a,有=tan a.显然,坡度越大,坡角α就越大,坡面就越陡. 方位角:指南或指北的方向线与目标方向线所成的小于90°角的为方位角. 四.例题分析: 1.勾股定理与锐角三角函数知识的应用 例1 在Rt△ABC中,∠C=90°,若sin A=,则cos A的值为( ) A. B. C. D. 变式: 如图7-4,在Rt△ABC中,∠C=90°,AB=10,sin A=. 求BC的长和tan B的值.B A C 图7-4 6 2.仰角、俯角、方位角、坡角和坡度(或坡比)的概念 例1 如图7-6-1,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比) (1)求点B距水平面AE的高度BH; (2)求广告牌CD的高度. (测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732) 图7-6-1 C D B H A E 45° 60° 图7-7-1 45° 36°52′ A E B D C 例2 如图7-7-1,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75) 6 图7-8-1 45° 60° B C P A 东 北 例3 如图7-8,在一笔直的海岸线l上有AB两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向. (1)求点P到海岸线l的距离; (2)小船从点P处沿射线AP的方向航行一段时间后,到点C处,此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.(上述两小题的结果都保留根号) 变式:1.如图,天空中有一个静止的广告气球C,从地面点A测得点C的仰角为45°,从地面点B测得点C的仰角为60°.已知AB=20 m,点C和直线AB在同一铅垂平面上,求气球离地面的高度(结果保留根号). 2.如图所示,海上有一灯塔P,在它周围3海里处有暗礁,一艘客轮以9海里/时的速度由西向东航行,行至A点处测得P在它的北偏东60°的方向,继续行驶20分钟后,到达B处又测得灯塔P在它的北偏东45°方向.问客轮不改变方向继续前进有无触礁的危险? 6 3.数形结合思想与转化思想的渗透 例3 如图7-5-1是工人将货物搬运上货车常用的方法,把一块木板斜靠在货车车厢的尾部,形成一个斜坡,货物通过斜坡进行搬运.根据经验,木板与地面的夹角为20°(即图10-5-2中∠ACB=20°)时最为合适,已知货车车厢底部到地面的距离AB=1.5m,木板超出车厢部分AD=0.5m,请求出木板CD的长度. (参考数据:sin 20°≈0.3420,cos 20°≈0.9397,精确到0.1m). A B C D 图7-5-1 图7-5-2 变式:1.如图所示,某风景区内有一古塔AB,在塔的北面有一建筑物,冬至日的正午光线与水平面的夹角是30°,此时塔在建筑物的墙上留下了高3米的影子CD;而在春分日正午光线与地面的夹角是45°,此时塔尖A在地面上的影子E与墙角C有15米的距离(B、E、C在一条直线上),求塔AB的高度(结果保留根号) 2.如图,在观测点E测得小山上铁塔顶A的仰角为60°,铁塔底部B的仰角为45°.已知塔高AB=20m,观察点E到地面的距离EF=35m,求小山BD的高(精确到0.1m,≈1.732). 6 3.如图所示,小山的顶部是一块平地,在这块平地上有一高压输电的铁架,小山的斜坡的坡度i=1:,斜坡BD的长是50米,在山坡的坡底处测得铁架顶端A的仰角为45°,在山坡的坡项D处测得铁架顶端A的仰角为60°. (1)求小山的高度; (2)求铁架的高度.(≈1.73,精确到0.1米) 四.综合演练 填空题 1.如图1,防洪大堤的横断面是梯形,坝高AC等于6米,背水坡AB的坡度i=1:2,则斜坡AB的长为_______米. 2.如图2所示,AB是⊙O的直径,弦AC、BD相交于E,则等于( ) A.tan∠AED B.cot∠AED C.sin∠AED D.cos∠AED 3.如图3,在矩形ABCD中DE⊥AC于E,设∠ADE=a,且cosα=,AB=4,则AD的长为( ) A.3 B. 4.如图.两条宽度为l的带子以角交叉重叠,则重叠部分(阴影部分)的面积是 A、sin B. C. D. 5.有一拦水坝的横断面是等腰梯形,它的上底长为6 m,下底长为10 m,高为2m,那么此拦水坝斜坡的坡度和坡角分别是 ( ) A.,60° B.,30° C.,60° D.,30° 6 解答题: 1.Rt△ABC中,∠C=90°,AC=12,∠A的平分线AD=8,求BC,AB. 2.两建筑物AB和CD的水平距离为45m,从A点测得C点的俯角为30°,测得D点的俯角为60°,求建筑物CD的高度. 3.如图,甲、乙两幢高楼的水平距离BD为90米,从甲楼顶部C点测得乙楼顶部A点的仰角α为30°,测得乙楼底部B点的仰角β为60°,求甲,乙两幢高楼各有多高?(计算过程和结果不取近似值) 4.震泽中学九年级数学课外学习小组某下午实践活动课时,测量朝西教学楼前的旗杆AB的高度.如图所示,当阳光从正西方向照射过来时,旗杆AB的顶端A的影子落在教学楼前的坪地C处,测得影长CE=2m,DE=4m,BD=20m,DE与地面的夹角为α=30°.在同一时刻,测得一根长为1m的直立竹竿的影长恰为4m.根据这些数据求旗杆AB的高度.(可能用到的数据:≈1.414,≈1.732,结果保留两个有效数字) 6查看更多