中考数学压轴题汇总
17.(2005浙江台州)如图,在平面直角坐标系内,⊙C与y轴相切于D
点,与x轴相交于A(2,0)、B(8,0)两点,圆心C在第四象限.
(1)求点C的坐标;
(2)连结BC并延长交⊙C于另一点E,若线段BE上有一点P,使得
AB2=BP·BE,能否推出AP⊥BE?请给出你的结论,并说明理由;
(3)在直线BE上是否存在点Q,使得AQ2=BQ·EQ?若存在,求出点Q的坐标;若不存在,也请说明理由.
18.(2005上海长宁)如图1,抛物线关于y轴对称,顶点C坐标为(0,h )(h>0), 交x轴于点A(d,0)、B(-d,0)(d>0)。
(1)求抛物线解析式(用h、d表示);
F
G
x
y
C
B
O
A
图4
(2)如图2,将ABC视为抛物线形拱桥,①~⑤拉杆均垂直x轴,垂足依次在线段AB的6等分点上。h=9米。
(i )求拉杆⑤DE的长度;
(ii)若d值增大,其他都不变,如图3。拉杆⑤DE的长度会改变吗?(只需写结论)
(3)如图4,点G在线段OA上,OG=kd(比例系数k是常数,0≤k≤1),GF⊥x轴交抛物线于点F。试探索k为何值时,
tg∠FOG= tg∠CAO?此时点G与OA线段有什么关系?
C
O
19.(2006上海金山)已知:抛物线经过A(2,0)、B(8,0)、C(0,)
(1)求抛物线的解析式;
(2)设抛物线的顶点为P,把△APB翻折,使点P落在线段AB上(不与A、B重合),记作,折痕为EF,设A= x,PE = y,求y关于x的函数关系式,并写出定义域;
(3)当点在线段AB上运动但不与A、B重合时,能否使△EF的一边与x轴垂直?若能,请求出此时点的坐标;若不能,请你说明理由。
20. (2006湖北十堰)已知抛物线:(,为常数,且,)的顶点为,与轴交于点;抛物线与抛物线关于轴对称,其顶点为,连接,,.
注:抛物线的顶点坐标为.
(1)请在横线上直接写出抛物线的解析式:________________________;
(2)当时,判定的形状,并说明理由;
(3)抛物线上是否存在点,使得四边形为菱形?
21.(2006湖北宜昌)如图,点O是坐标原点,点A(n,0)是x轴上一动点(n<0)以AO为一边作矩形AOBC,点C在第二象限,且OB=2OA.矩形AOBC绕点A逆时针旋转90o得矩形AGDE.过点A的直线y=kx+m 交y轴于点F,FB=FA.抛物线y=ax2+bx+c过点E、F、G且和直线AF交于点H,过点H作HM⊥x轴,垂足为点M.
(1)求k的值;
(2)点A位置改变时,△AMH的面积和矩形AOBC 的面积的比值是否改变?说明你的理由.
22.(2005黑龙江)如图,在平面直角坐标系中,Rt△ABC的斜边AB在x轴上,AB=25,顶点C在y轴的负半轴上,tan∠ACO=,点P在线段OC上,且PO、PC的长(PO
c,且二次函数的图像经过点(p , -2),求证:b≥0;
(3)若a + b + c = 0,a > b > c,且二次函数的图像经过点(q , - a),试问当自变量x = q +4时,二次函数所对应的函数值y是否大于0?请证明你的结论.
5.(2006江苏盐城)已知:如图,A(0,1)是y轴上一定点,B是x轴上一动点,以AB为边,在∠OAB的外部作∠BAE=∠OAB ,过B作BC⊥AB,交AE于点C.
(1)当B点的横坐标为时,求线段AC的长;
(2)当点B在x轴上运动时,设点C的纵、横坐标分别为y、x,试求y与x的函数关系式(当点B运动到O点时,点C也与O点重合);
(3)设过点P(0,-1)的直线l与(2)中所求函数的图象有两个公共点M1(x1,y1)、M2(x2,y2),且x12+x22-6(x1+x2)=8,求直线l的解析式.
6.(2006广东广州)已知抛物线y =x2+mx-2m2(m≠0).
(1)求证:该抛物线与x轴有两个不同的交点;
(2)过点P(0,n)作y轴的垂线交该抛物线于点A和点B(点A在点P的左边),是
否存在实数m、n,使得AP=2PB?若存在,则求出m、n满足的条件;若不存在,请说明理由.
1.(2001天津)已知:在Rt△ABC中,∠B=90°,BC=4cm,AB=8cm,D、E、F分别为AB、AC、BC边上的中点.若P为AB边上的一个动点,PQ∥BC,且交AC于点Q,以PQ为一边,在点A的异侧作正方形PQMN,记正方形PQMN与矩形EDBF的公共部分的面积为y.
(1)如图,当AP=3cm时,求y的值;
(2)设AP=xcm,试用含x的代表式表示y(cm)2;
(3)当y=2cm2时,试确定点P的位置.
2.(2002上海)操作:将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q.
图5图6图7
探究:设A、P两点间的距离为x.
(1)当点Q在边CD上时,线段PQ与线段PB之间有怎样的大小关系?试证明你观察得到结论;
(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数解析式,并写出函数的定义域;
(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应的x的值;如果不可能,试说明理由.(图5、图6、图7的形状大小相同,图5供操作、实验用,图6和图7备用)
4. (2004山东枣庄)如图,在△ABC中,AB=17,AC=5,∠CAB=45°,点O在BA上移动,以O为圆心作⊙O,使⊙O与边BC相切,切点为D,设⊙O的半径为x,四边形AODC的面积为y.
A
B
O
D
C
(1)求 y与x的函数关系式;
(2)求x的取值范围;
(3)当x为何值时,⊙O与BC、AC都相切?
5.(2004浙江宁波)已知是半圆的直径,AB=16,P点是AB上的一动点(不与A、B重合) ,PQ⊥AB, 垂足为P,交半圆O于Q;PB是半圆O1的直径,⊙O2与半圆O、半圆O1及PQ都相切,切点分别为M、N、C.
(1)当P点与O点重合时(如图1) ,求⊙O2的半径r;
图⑵
图⑴
A
O
(P)
N
·
O2
·
O1
M
C
Q
B
P
·
A
O
N
·
O2
·
O1
M
C
Q
B
(2)当P点在AB上移动时(如图2) ,设PQ=x,⊙O2的半径r.求R与x的函数关系式,并求出r取值范围.
6.(2005河北)如图12,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21。动点P从点D出发,沿射线DA的方向以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时出发,当点Q运动到点B时,点P随之停止运动。设运动的时间为t(秒)。
(1)设△BPQ的面积为S,求S与t之间的函数关系式;
A
B
M
C
D
P
Q
图3
(2)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形?
(3)当线段PQ与线段AB相交于点O,且2AO=OB时,求∠BQP的正切值;
(4)是否存在时刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,请说明理由。
7.(2005河南)如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,AB=2,DC=2,点P在边BC上运动(与B、C不重合),设PC=x,四边形ABPD的面积为y。
(1)求y关于x的函数关系式,并写出自变量x的取值范围;
(2)若以D为圆心、为半径作⊙D,以P为圆心、以PC的长为半径作⊙P,当x为何值时,⊙D与⊙P相切?并求出这两圆相切时四边形ABPD的面积。
8.(2005江苏宿迁)已知:如图,△ABC中,∠C=90°,AC=3厘米,CB=4厘米.两个动点P、Q分别从A、C两点同时按顺时针方向沿△ABC的边运动.当点Q运动到点A时,P、Q两点运动即停止.点P、Q的运动速度分别为1厘米/秒、2厘米/秒,设点P运动时间为(秒).
(1)当时间为何值时,以P、C、Q三点为顶点的三角形的面积(图中的阴影部分)等于2厘米2;
(2)当点P、Q运动时,阴影部分的形状随之变化.设PQ与△ABC围成阴影部分面积为S(厘米2),求出S与时间的函数关系式,并指出自变量的取值范围;
(3)点P、Q在运动的过程中,阴影部分面积S有最大值吗?若有,请求出最大值;若没有,请说明理由.
9.(2005江苏泰州)图1是边长分别为4和3的两个等边三角形纸片ABC和C′D′E′叠放在一起(C与C′重合).
(1)操作:固定△ABC,将△C′D′E′绕点C顺时针旋转30°得到△CDE,连结AD、BE,CE的延长线交AB于F(图2);
探究:在图2中,线段BE与AD之间有怎样的大小关系?试证明你的结论.
(2)操作:将图2中的△CDE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的△CDE设为△PQR(图3);
探究:设△PQR移动的时间为x秒,△PQR与△ABC重叠部分的面积为y,求y与x之间的函数解析式,并写出函数自变量x的取值范围.
(3)操作:图1中△C′D′E′固定,将△ABC移动,使顶点C落在C′E′的中点,边BC交D′E′于点M,边AC交D′C′于点N,设∠AC C′=α(30°<α<90°=(图4);
E′
D′
图2
图3
D′
E′
图4
C/
(C/)
(C/)
探究:在图4中,线段C′N·E′M的值是否随α的变化而变化?如果没有变化,请你求出C′N·E′M的值,如果有变化,请你说明理由.
[
10.(2005江苏南通)如图,在平面直角坐标系中,已知A(-10,0),B(-8,6),O为坐标原点,△OAB沿AB翻折得到△PAB.将四边形OAPB先向下平移3个单位长度,再向右平移m(m>0)个单位长度,得到四边形O1A1P1B1.设四边形O1A1P1B1与四边形OAPB重叠部分图形的周长为l.
(1)求A1、P1两点的坐标(用含m的式子表示);
O
-3
y
B
x
A
P
Q
α
图1
(2)求周长l与m之间的函数关系式,并写出m的取值范围.
11.(2005新疆乌鲁木齐)四边形OABC是等腰梯形,OA∥BC。在建立如图的平面直角坐标系中,A(4,0),B(3,2),点M从O点以每秒3个单位的速度向终点A运动;同时点N从B点出发以每秒1个单位的速度向终点C运动,过点N作NP垂直于x轴于P点连结AC交NP于Q,连结MQ。
(1)写出C点的坐标;
(2)若动点N运动t秒,求Q点的坐标(用含t的式子表示
(3)其△AMQ的面积S与时间t的函数关系式,并写出自变量t的取值范围。
(4)当t取何值时,△AMQ的面积最大;
(5)当t为何值时,△AMQ为等腰三角形。
12. (2005浙江温州)如图,在Rt△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,点P、Q分别从B、C两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s;点P沿CA、AB向终点B运动,速度为2cm/s,设它们运动的时间为x(s)。
⑴ 求x为何值时,PQ⊥AC;
⑵ 设△PQD的面积为y(cm2),当0<x<2时,求y与x的函数关系式;
⑶ 当0<x<2时,求证:AD平分△PQD的面积;
⑷ 探索以PQ为直径的圆与AC的位置关系。请写出相应位置关系的x的取值范围(不要求写出过程)
13. (2005上海静安)如图4,已知⊙O的半径OA=,弦AB=4,点C在弦AB上,以点C为圆心,CO为半径的圆与线段OA相交于点E.
(1)求的值;
(2)设AC=,OE=,求与之间的函数解析式,并写出定义域;
(3)当点C在AB上运动时,⊙C是否可能与⊙O相切?如果可能,请求出当⊙C与⊙O相切时的AC的长;如果不可能,请说明理由.
14. (2005上海闵行)已知:如图,在梯形ABCD中,,,,.
A
B
C
D
P
E
Q
点E在AD边上,且,连结CE.点P是AB边上的一个动点,过
点P作,交BC于点Q.设,.
(1) 求的值;
(2) 求y与x的函数解析式,并写出函数的定义域;
(3) 当时,求x的值.
16.(2006广东课改)如图所示,在平面直角坐标中,四边形OABC是等腰梯形,BC∥OA,OA=7,AB=4,∠ COA=60°,点P为x轴上的—个动点,点P不与点0、点A重合.连结CP,过点P作PD交AB于点D.
(1)求点B的坐标;
(2)当点P运动什么位置时,△OCP为等腰三角形,求这时点P的坐标;
(3)当点P运动什么位置时,使得∠CPD=∠OAB,且=,求这时点P的坐标。
17.(2006上海静安)如图,在以O为圆心的两个同心圆中,小圆的半径为1,AB与小圆相切于点A,与大圆相交于B,大圆的弦BC⊥AB,过点C作大圆的切线交AB的延长线于D,OC交小圆于E.
(1) 求证:△AOB∽△BDC;
(2) 设大圆的半径为,CD的长为,求与之间的函数解析式,并写出定义域.
(1) △BCE能否成为等腰三角形?如果可能,求出大圆半径;如果不可能,请说明理由.
18. (2006山东青岛)如图①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O 是△EFG斜边上的中点.
如图②,若整个△EFG从图①的位置出发,以1cm/s 的速度沿射线AB方向平移,在△EFG 平移的同时,点P从△EFG的顶点G出发,以1cm/s 的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移.设运动时间为x(s),FG的延长线交 AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况).
(1)当x为何值时,OP∥AC ?
(2)求y与x 之间的函数关系式,并确定自变量x的取值范围.
(3)是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为13∶24?若存在,求出x的值;若不存在,说明理由.
(参考数据:1142 =12996,1152 =13225,1162 =13456
或4.42 =19.36,4.52 =20.25,4.62 =21.16)
A
P
C
Q
B
D
19.(2006河北)如图,在Rt△ABC中,∠C=90°,AC=12,BC=16,动点P从点A出发沿AC边向点C以每秒3个单位长的速度运动,动点Q从点C出发沿CB边向点B以每秒4个单位长的速度运动.P,Q分别从点A,C同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ关于直线PQ对称的图形是△PDQ.设运动时间为t(秒).
(1)设四边形PCQD的面积为y,求y与t的函数关系式;
(2)t为何值时,四边形PQBA是梯形?
(3)是否存在时刻t,使得PD∥AB?若存在,求出t的值;若不存在,请说明理由;
(4)通过观察、画图或折纸等方法,猜想是否存在时刻t,使得PD⊥AB?若存在,请估计t的值在括号中的哪个时间段内(0≤t≤1;1<t≤2;2<t≤3;3<t≤4);若不存在,请简要说明理由.
1.(2004福建南平)已知:如图① , A是半径为2的⊙O上的一点,P是OA延长线上的一动点,过P作⊙O的切线,切点为B、设PA=m , PB=n .
(1)当n=4时,求m的值;
(2)⊙O上是否存在点C,使△PBC为等边三角形?若存在,请求出此时m的值;若不存在,请说明理由;
(3)当m为何值时,⊙O上存在唯一点M和PB构成以PB为底的等腰三角形?并直接答出:此时⊙O上能与PB构成等腰三角形的点共有几个?(图②、图③供解题时选用)
A
B
图①
P
·
O
A
·
O
A
·
O
图②
图③
2.(2005福建南平)定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形.
探究:
(1)如图甲,已知△ABC中∠C=900,你能把△ABC分割成2个与它自己相似的
小直角三角形吗?若能,请在图甲中画出分割线,并说明理由.
(2)一般地,“任意三角形都是自相似图形”,只要顺次连结三角形各边中点,
B
C
A
图甲
则可将原三角形分割为四个都与它自己相似的小三角形.我们把△DEF
(图乙)第一次顺次连结各边中点所进行的分割,称为1阶分割(如图1);
把1阶分割得出的4个三角形再分别顺次连结它的各边中点所进行的分
割,称为2阶分割(如图2)…依次规则操作下去.
n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时
小三角形的面积为SN.
①若△DEF的面积为10000,当n为何值时,21时,请写出一个反映Sn-1,Sn,Sn+1之间关系的等式(不必证明)
3.(2005广西玉林)如图(1),AB是⊙O的直径,射线AT⊥AB,点P是射线A T上的一个动点(P与A不重合),PC与⊙O相切于C,过C作CE⊥AB于E,连结BC并延长BC交AT于点D,连结PB交CE于F.
(1)请你写出PA、PD之间的关系式,并说明理由;
(2)请你找出图中有哪些三角形的面积被PB分成两等分,并加以证明;
(3)设过A、C、D三点的圆的半径是R,当CF=R时,求∠APC的度数,并在图(2)中作出点P(要求尺规作图,不写作法,但要保留作图痕迹).
6.(2005重庆) 已知四边形ABCD中,P是对角线BD上的一点,过P作MN∥AD,EF∥CD,分别交AB、CD、AD、BC于点M、N、E、F,设=PM·PE,=PN·PF,解答下列问题:
(1)当四边形ABCD是矩形时,见图1,请判断与的大小关系,并说明理由;
(2)当四边形ABCD是平行四边形,且∠A为锐角时,见图2,(1)中的结论是否成立?并说明理由;
(3)在(2)的条件下,设,是否存在这样的实数,使得?若存在,请求出满足条件的所有的值;若不存在,请说明理由。
8.(2006山东日照)阅读下面的材料:
如图(1),在以AB为直径的半圆O内有一点P,AP、BP的延长线分别交半圆O于点C、D.求证:AP·AC+BP·BD=AB2.
证明:连结AD、BC,过P作PM⊥AB,则∠ADB=∠AMP=90o,
∴点D、M在以AP为直径的圆上;同理:M、C在以BP为直径的圆上.
由割线定理得: AP·AC=AM·AB,BP·BD=BM·BA,
所以,AP·AC+BP·BD=AM·AB+BM·AB=AB·(AM+BM)=AB2.
当点P在半圆周上时,也有AP·AC+BP·BD=AP2+BP2=AB2成立,那么:
(1)如图(2)当点P在半圆周外时,结论AP·AC+BP·BD=AB2是否成立?为什么?
(2)如图(3)当点P在切线BE外侧时,你能得到什么结论?将你得到的结论写出来.