- 2021-11-12 发布 |
- 37.5 KB |
- 28页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2019年江苏省盐城市中考数学试卷含答案
2019年江苏省盐城市中考数学试卷 一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置) 1.(3分)如图,数轴上点A表示的数是( ) A.﹣1 B.0 C.1 D.2 2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是( ) A. B. C. D. 3.(3分)若x-2有意义,则x的取值范围是( ) A.x≥2 B.x≥﹣2 C.x>2 D.x>﹣2 4.(3分)如图,点D、E分别是△ABC边BA、BC的中点,AC=3,则DE的长为( ) A.2 B.43 C.3 D.32 5.(3分)如图是由6个小正方体搭成的物体,该所示物体的主视图是( ) A. B. C. D. 6.(3分)下列运算正确的是( ) A.a5•a2=a10 B.a3÷a=a2 C.2a+a=2a2 D.(a2)3=a5 7.(3分)正在建设中的北京大兴国际机场规划建设面积约1400000平方米的航站楼,数据1400000用科学记数法应表示为( ) A.0.14×108 B.1.4×107 C.1.4×106 D.14×105 8.(3分)关于x的一元二次方程x2+kx﹣2=0(k为实数)根的情况是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.不能确定 二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡的相应位置上) 9.(3分)如图,直线a∥b,∠1=50°,那么∠2= °. 10.(3分)分解因式:x2﹣1= . 11.(3分)如图,转盘中6个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针落在阴影部分的概率为 . 12.(3分)甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.14s2,乙的方差是0.06s2,这5次短跑训练成绩较稳定的是 .(填“甲”或“乙”) 13.(3分)设x1、x2是方程x2﹣3x+2=0的两个根,则x1+x2﹣x1•x2= . 14.(3分)如图,点A、B、C、D、E在⊙O上,且AB为50°,则∠E+∠C= °. 15.(3分)如图,在△ABC中,BC=6+2,∠C=45°,AB=2AC,则AC的长为 . 16.(3分)如图,在平面直角坐标系中,一次函数y=2x﹣1的图象分别交x、y轴于点A、B,将直线AB绕点B按顺时针方向旋转45°,交x轴于点C,则直线BC的函数表达式是 . 三、解答题(本大题共有11小题,共102分,请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤) 17.(6分)计算:|﹣2|+(sin36°-12)0-4+tan45°. 18.(6分)解不等式组:x+1>2,2x+3≥12x. 19.(8分)如图,一次函数y=x+1的图象交y轴于点A,与反比例函数y=kx(x>0)的图象交于点B(m,2). (1)求反比例函数的表达式; (2)求△AOB的面积. 20.(8分)在一个不透明的布袋中,有2个红球,1个白球,这些球除颜色外都相同. (1)搅匀后从中任意摸出1个球,摸到红球的概率是 . (2)搅匀后先从中任意摸出1个球(不放回),再从余下的球中任意摸出1个球.求两次都摸到红球的概率.(用树状图或表格列出所有等可能出现的结果) 21.(8分)如图,AD是△ABC的角平分线. (1)作线段AD的垂直平分线EF,分别交AB、AC于点E、F;(用直尺和圆规作图,标明字母,保留作图痕迹,不写作法.) (2)连接DE、DF,四边形AEDF是 形.(直接写出答案) 22.(10分)体育器材室有A、B两种型号的实心球,1只A型球与1只B型球的质量共7千克,3只A型球与1只B型球的质量共13千克. (1)每只A型球、B型球的质量分别是多少千克? (2)现有A型球、B型球的质量共17千克,则A型球、B型球各有多少只? 23.(10分)某公司共有400名销售人员,为了解该公司销售人员某季度商品销售情况,随机抽取部分销售人员该季度的销售数量,并把所得数据整理后绘制成如下统计图表进行分析. 频数分布表 组别 销售数量(件) 频数 频率 A 20≤x<40 3 0.06 B 40≤x<60 7 0.14 C 60≤x<80 13 a D 80≤x<100 m 0.46 E 100≤x<120 4 0.08 合计 b 1 请根据以上信息,解决下列问题: (1)频数分布表中,a= 、b= ; (2)补全频数分布直方图; (3)如果该季度销量不低于80件的销售人员将被评为“优秀员工”,试估计该季度被评为“优秀员工”的人数. 24.(10分)如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,以CD为直径的⊙O分别交AC、BC于点M、N,过点N作NE⊥AB,垂足为E. (1)若⊙O的半径为52,AC=6,求BN的长; (2)求证:NE与⊙O相切. 25.(10分)如图①是一张矩形纸片,按以下步骤进行操作: (Ⅰ)将矩形纸片沿DF折叠,使点A落在CD边上点E处,如图②; (Ⅱ)在第一次折叠的基础上,过点C再次折叠,使得点B落在边CD上点B′处,如图③,两次折痕交于点O; (Ⅲ)展开纸片,分别连接OB、OE、OC、FD,如图④. 【探究】 (1)证明:△OBC≌△OED; (2)若AB=8,设BC为x,OB2为y,求y关于x的关系式. 26.(12分)【生活观察】甲、乙两人买菜,甲习惯买一定质量的菜,乙习惯买一定金额的菜,两人每次买菜的单价相同,例如: 第一次 菜价3元/千克 质量 金额 甲 1千克 3元 乙 1千克 3元 第二次: 菜价2元/千克 质量 金额 甲 1千克 元 乙 千克 3元 (1)完成上表; (2)计算甲两次买菜的均价和乙两次买菜的均价.(均价=总金额÷总质量) 【数学思考】设甲每次买质量为m千克的菜,乙每次买金额为n元的菜,两次的单价分别是a元/千克、b元/千克,用含有m、n、a、b的式子,分别表示出甲、乙两次买菜的均价x甲、x乙,比较x甲、x乙的大小,并说明理由. 【知识迁移】某船在相距为s的甲、乙两码头间往返航行一次.在没有水流时,船的速度为v,所需时间为t1;如果水流速度为p时(p<v),船顺水航行速度为(v+p),逆水航行速度为(v﹣p),所需时间为t2.请借鉴上面的研究经验,比较t1、t2的大小,并说明理由. 27.(14分)如图所示,二次函数y=k(x﹣1)2+2的图象与一次函数y=kx﹣k+2的图象交于A、B两点,点B在点A的右侧,直线AB分别与x、y轴交于C、D两点,其中k <0. (1)求A、B两点的横坐标; (2)若△OAB是以OA为腰的等腰三角形,求k的值; (3)二次函数图象的对称轴与x轴交于点E,是否存在实数k,使得∠ODC=2∠BEC,若存在,求出k的值;若不存在,说明理由. 2019年江苏省盐城市中考数学试卷 参考答案与试题解析 一、选择题(本大题共有8小题,每小题3分,共24分,在每小题所给出的四个选项只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置) 1.(3分)如图,数轴上点A表示的数是( ) A.﹣1 B.0 C.1 D.2 【解答】解:数轴上点A所表示的数是1. 故选:C. 2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是( ) A. B. C. D. 【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误; B、既是中心对称图形也是轴对称图形,故此选项正确; C、不是轴对称图形,是中心对称图形,故此选项错误; D、不是轴对称图形,也不是中心对称图形,故此选项错误. 故选:B. 3.(3分)若x-2有意义,则x的取值范围是( ) A.x≥2 B.x≥﹣2 C.x>2 D.x>﹣2 【解答】解:依题意,得 x﹣2≥0, 解得,x≥2. 故选:A. 4.(3分)如图,点D、E分别是△ABC边BA、BC的中点,AC=3,则DE的长为( ) A.2 B.43 C.3 D.32 【解答】解:∵点D、E分别是△ABC的边BA、BC的中点, ∴DE是△ABC的中位线, ∴DE=12AC=1.5. 故选:D. 5.(3分)如图是由6个小正方体搭成的物体,该所示物体的主视图是( ) A. B. C. D. 【解答】解:从正面看易得第一层有3个正方形,第二层中间有一个正方形,如图所示: 故选:C. 6.(3分)下列运算正确的是( ) A.a5•a2=a10 B.a3÷a=a2 C.2a+a=2a2 D.(a2)3=a5 【解答】解:A、a5•a2=a7,故选项A不合题意; B、a3÷a=a2,故选项B符合题意; C、2a+a=3a,故选项C不合题意; D、(a2)3=a6,故选项D不合题意. 故选:B. 7.(3分)正在建设中的北京大兴国际机场规划建设面积约1400000平方米的航站楼,数据1400000用科学记数法应表示为( ) A.0.14×108 B.1.4×107 C.1.4×106 D.14×105 【解答】解: 科学记数法表示:1400 000=1.4×106 故选:C. 8.(3分)关于x的一元二次方程x2+kx﹣2=0(k为实数)根的情况是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.没有实数根 D.不能确定 【解答】解: 由根的判别式得,△=b2﹣4ac=k2+8>0 故有两个不相等的实数根 故选:A. 二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请将答案直接写在答题卡的相应位置上) 9.(3分)如图,直线a∥b,∠1=50°,那么∠2= 50 °. 【解答】解:∵a∥b,∠1=50°, ∴∠1=∠2=50°, 故答案为:50. 10.(3分)分解因式:x2﹣1= (x+1)(x﹣1) . 【解答】解:x2﹣1=(x+1)(x﹣1). 故答案为:(x+1)(x﹣1). 11.(3分)如图,转盘中6个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针落在阴影部分的概率为 12 . 【解答】解:∵圆被等分成6份,其中阴影部分占3份, ∴落在阴影区域的概率为12, 故答案为:12. 12.(3分)甲、乙两人在100米短跑训练中,某5次的平均成绩相等,甲的方差是0.14s2,乙的方差是0.06s2,这5次短跑训练成绩较稳定的是 乙 .(填“甲”或“乙”) 【解答】解:∵甲的方差为0.14s2,乙的方差为0.06s2, ∴S甲2>S乙2, ∴成绩较为稳定的是乙; 故答案为:乙. 13.(3分)设x1、x2是方程x2﹣3x+2=0的两个根,则x1+x2﹣x1•x2= 1 . 【解答】解:x1、x2是方程x2﹣3x+2=0的两个根, ∴x1+x2=3,x1•x2=2, ∴x1+x2﹣x1•x2=3﹣2=1; 故答案为1; 14.(3分)如图,点A、B、C、D、E在⊙O上,且AB为50°,则∠E+∠C= 155 °. 【解答】解:连接EA, ∵AB为50°, ∴∠BEA=25°, ∵四边形DCAE为⊙O的内接四边形, ∴∠DEA+∠C=180°, ∴∠DEB+∠C=180°﹣25°=155°, 故答案为:155. 15.(3分)如图,在△ABC中,BC=6+2,∠C=45°,AB=2AC,则AC的长为 2 . 【解答】解:过点A作AD⊥BC,垂足为点D,如图所示. 设AC=x,则AB=2x. 在Rt△ACD中,AD=AC•sinC=22x, CD=AC•cosC=22x; 在Rt△ABD中,AB=2x,AD=22x, ∴BD=AB2-AD2=62. ∴BC=BD+CD=62x+22x=6+2, ∴x=2. 故答案为:2. 16.(3分)如图,在平面直角坐标系中,一次函数y=2x﹣1的图象分别交x、y轴于点A、 B,将直线AB绕点B按顺时针方向旋转45°,交x轴于点C,则直线BC的函数表达式是 y=13x﹣1 . 【解答】解:∵一次函数y=2x﹣1的图象分别交x、y轴于点A、B, ∴令x=0,得y=﹣2,令y=0,则x=1, ∴A(12,0),B(0,﹣1), ∴OA=12,OB=1, 过A作AF⊥AB交BC于F,过F作FE⊥x轴于E, ∵∠ABC=45°, ∴△ABF是等腰直角三角形, ∴AB=AF, ∵∠OAB+∠ABO+∠OAB+∠EAF=90°, ∴∠ABO=∠EAF, ∴△ABO≌△AFE(AAS), ∴AE=OB=1,EF=OA=12, ∴F(32,-12), 设直线BC的函数表达式为:y=kx+b, ∴32k+b=-12b=-1, ∴k=13b=-1, ∴直线BC的函数表达式为:y=13x﹣1, 故答案为:y=13x﹣1. 三、解答题(本大题共有11小题,共102分,请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤) 17.(6分)计算:|﹣2|+(sin36°-12)0-4+tan45°. 【解答】解:原式=2+1﹣2+1=2. 18.(6分)解不等式组:x+1>2,2x+3≥12x. 【解答】解:x+1>2①2x+3≥12x② 解不等式①,得x>1, 解不等式②,得x≥﹣2, ∴不等式组的解集是x>1. 19.(8分)如图,一次函数y=x+1的图象交y轴于点A,与反比例函数y=kx(x>0)的图象交于点B(m,2). (1)求反比例函数的表达式; (2)求△AOB的面积. 【解答】解:(1)∵点B(m,2)在直线y=x+1上, ∴2=m+1,得m=1, ∴点B的坐标为(1,2), ∵点B(1,2)在反比例函数y=kx(x>0)的图象上, ∴2=k1,得k=2, 即反比例函数的表达式是y=2x; (2)将x=0代入y=x+1,得y=1, 则点A的坐标为(0,1), ∵点B的坐标为(1,2), ∴△AOB的面积是;1×12=12. 20.(8分)在一个不透明的布袋中,有2个红球,1个白球,这些球除颜色外都相同. (1)搅匀后从中任意摸出1个球,摸到红球的概率是 23 . (2)搅匀后先从中任意摸出1个球(不放回),再从余下的球中任意摸出1个球.求两次都摸到红球的概率.(用树状图或表格列出所有等可能出现的结果) 【解答】解:(1)搅匀后从中任意摸出1个球,摸到红球的概率=23;、 故答案为23; (2)画树状图为: 共有6种等可能的结果数,其中两次都摸到红球的结果数为2, 所以两次都摸到红球的概率=26=13. 21.(8分)如图,AD是△ABC的角平分线. (1)作线段AD的垂直平分线EF,分别交AB、AC于点E、F;(用直尺和圆规作图,标明字母,保留作图痕迹,不写作法.) (2)连接DE、DF,四边形AEDF是 菱 形.(直接写出答案) 【解答】解:(1)如图,直线EF即为所求. (2)∵AD平分∠ABC, ∴∠BAD=∠CAD, ∴∠BAD=∠CAD, ∵∠AOE=∠AOF=90°,AO=AO, ∴△AOE≌△AOF(ASA), ∴AE=AF, ∵EF垂直平分线段AD, ∴EA=ED,FA=FD, ∴EA=ED=DF=AF, ∴四边形AEDF是菱形. 故答案为菱. 22.(10分)体育器材室有A、B两种型号的实心球,1只A型球与1只B型球的质量共7千克,3只A型球与1只B型球的质量共13千克. (1)每只A型球、B型球的质量分别是多少千克? (2)现有A型球、B型球的质量共17千克,则A型球、B型球各有多少只? 【解答】解:(1)设每只A型球、B型球的质量分别是x千克、y千克,根据题意可得: x+y=73x+y=13, 解得:x=3y=4, 答:每只A型球的质量是3千克、B型球的质量是4千克; (2)∵现有A型球、B型球的质量共17千克, ∴设A型球1个,设B型球a个,则3+4a=17, 解得:a=72(不合题意舍去), 设A型球2个,设B型球b个,则6+4b=17, 解得:b=114(不合题意舍去), 设A型球3个,设B型球c个,则9+4c=17, 解得:c=2, 设A型球4个,设B型球d个,则12+4d=17, 解得:d=54(不合题意舍去), 设A型球5个,设B型球e个,则15+4e=17, 解得:a=12(不合题意舍去), 综上所述:A型球、B型球各有3只、2只. 23.(10分)某公司共有400名销售人员,为了解该公司销售人员某季度商品销售情况,随机抽取部分销售人员该季度的销售数量,并把所得数据整理后绘制成如下统计图表进行分析. 频数分布表 组别 销售数量(件) 频数 频率 A 20≤x<40 3 0.06 B 40≤x<60 7 0.14 C 60≤x<80 13 a D 80≤x<100 m 0.46 E 100≤x<120 4 0.08 合计 b 1 请根据以上信息,解决下列问题: (1)频数分布表中,a= 0.26 、b= 50 ; (2)补全频数分布直方图; (3)如果该季度销量不低于80件的销售人员将被评为“优秀员工”,试估计该季度被评为“优秀员工”的人数. 【解答】解:(1)根据题意得:b=3÷0.06=50,a=1350=0.26; 故答案为:0.26;50; (2)根据题意得:m=50×0.46=23, 补全频数分布图,如图所示: (3)根据题意得:400×(0.46+0.08)=216, 则该季度被评为“优秀员工”的人数为216人. 24.(10分)如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,以CD为直径的⊙O分别交AC、BC于点M、N,过点N作NE⊥AB,垂足为E. (1)若⊙O的半径为52,AC=6,求BN的长; (2)求证:NE与⊙O相切. 【解答】解:(1)连接DN,ON ∵⊙O的半径为52, ∴CD=5 ∵∠ACB=90°,CD是斜边AB上的中线, ∴BD=CD=AD=5, ∴AB=10, ∴BC=AB2-AC2=8 ∵CD为直径 ∴∠CND=90°,且BD=CD ∴BN=NC=4 (2)∵∠ACB=90°,D为斜边的中点, ∴CD=DA=DB=12AB, ∴∠BCD=∠B, ∵OC=ON, ∴∠BCD=∠ONC, ∴∠ONC=∠B, ∴ON∥AB, ∵NE⊥AB, ∴ON⊥NE, ∴NE为⊙O的切线. 25.(10分)如图①是一张矩形纸片,按以下步骤进行操作: (Ⅰ)将矩形纸片沿DF折叠,使点A落在CD边上点E处,如图②; (Ⅱ)在第一次折叠的基础上,过点C再次折叠,使得点B落在边CD上点B′处,如图③,两次折痕交于点O; (Ⅲ)展开纸片,分别连接OB、OE、OC、FD,如图④. 【探究】 (1)证明:△OBC≌△OED; (2)若AB=8,设BC为x,OB2为y,求y关于x的关系式. 【解答】解:(1)证明:由折叠可知,AD=ED,∠BCO=∠DCO=∠ADO=∠CDO=45° ∴BC=DE,∠COD=90°,OC=OD, 在△OBC≌△OED中, OC=OD∠OCB=∠ODEBC=DE, ∴△OBC≌△OED(SAS); (2)过点O作OH⊥CD于点H. 由(1)△OBC≌△OED, OE=OB, ∵BC=x,则AD=DE=x, ∴CE=8﹣x, ∵OC=OD,∠COD=90° ∴CH=12CD=12AB=12×8=4, OH=12CD=4, ∴EH=CH﹣CE=4﹣(8﹣x)=x﹣4 在Rt△OHE中,由勾股定理得 OE2=OH2+EH2, 即OB2=42+(x﹣4)2, ∴y关于x的关系式:y=x2﹣8x+32. 26.(12分)【生活观察】甲、乙两人买菜,甲习惯买一定质量的菜,乙习惯买一定金额的菜,两人每次买菜的单价相同,例如: 第一次 菜价3元/千克 质量 金额 甲 1千克 3元 乙 1千克 3元 第二次: 菜价2元/千克 质量 金额 甲 1千克 2 元 乙 1.5 千克 3元 (1)完成上表; (2)计算甲两次买菜的均价和乙两次买菜的均价.(均价=总金额÷总质量) 【数学思考】设甲每次买质量为m千克的菜,乙每次买金额为n元的菜,两次的单价分别是a元/千克、b元/千克,用含有m、n、a、b的式子,分别表示出甲、乙两次买菜的均价x甲、x乙,比较x甲、x乙的大小,并说明理由. 【知识迁移】某船在相距为s的甲、乙两码头间往返航行一次.在没有水流时,船的速度为v,所需时间为t1;如果水流速度为p时(p<v),船顺水航行速度为(v+p ),逆水航行速度为(v﹣p),所需时间为t2.请借鉴上面的研究经验,比较t1、t2的大小,并说明理由. 【解答】解:(1)2×1=2(元),3÷2=1.5(元/千克) 故答案为2;1.5. (2)甲两次买菜的均价为:(3+2)÷2=2.5(元/千克) 乙两次买菜的均价为:(3+3)÷(1+1.5)=2.4(元/千克) ∴甲两次买菜的均价为2.5(元/千克),乙两次买菜的均价为2.4(元/千克). 【数学思考】x甲=ma+mb2m=a+b2,x乙=2nna+nb=2aba+b ∴x甲-x乙═a+b2-2aba+b=(a-b)22(a+b)≥0 ∴x甲≥x乙 【知识迁移】t1=2sv,t2=sv+p+sv-p=2svv2-p2 ∴t1﹣t2═2sv-2svv2-p2=-2sp2v(v2-p2) ∵0<p<v ∴t1﹣t2<0 ∴t1<t2. 27.(14分)如图所示,二次函数y=k(x﹣1)2+2的图象与一次函数y=kx﹣k+2的图象交于A、B两点,点B在点A的右侧,直线AB分别与x、y轴交于C、D两点,其中k<0. (1)求A、B两点的横坐标; (2)若△OAB是以OA为腰的等腰三角形,求k的值; (3)二次函数图象的对称轴与x轴交于点E,是否存在实数k,使得∠ODC=2∠BEC,若存在,求出k的值;若不存在,说明理由. 【解答】解:(1)将二次函数与一次函数联立得:k(x﹣1)2+2=kx﹣k+2, 解得:x=1或2, 故点A、B的坐标分别为(1,2)、(2,k+2); (2)OA=22+1=5, ①当OA=AB时, 即:1+k2=5,解得:k=±2(舍去2); ②当OA=OB时, 4+(k+2)2=5,解得:k=﹣1或﹣3; 故k的值为:﹣1或﹣2或﹣3; (3)存在,理由: ①当点B在x轴上方时, 过点B作BH⊥AE于点H,将△AHB的图形放大见右侧图形, 过点A作∠HAB的角平分线交BH于点M,过点M作MN⊥AB于点N,过点B作BK⊥x轴于点K, 图中:点A(1,2)、点B(2,k+2),则AH=﹣k,HB=1, 设:HM=m=MN,则BM=1﹣m, 则AN=AH=﹣k,AB=k2+1,NB=AB﹣AN, 由勾股定理得:MB2=NB2+MN2, 即:(1﹣m)2=m2+(k2+1+k)2, 解得:m=﹣k2﹣kk2+1, 在△AHM中,tanα=HMAH=m-k=k+k2+1=tan∠BEC=BKEK=k+2, 解得:k=±3(舍去正值), 故k=-3; ②当点B在x轴下方时, 同理可得:tanα=HMAH=m-k=k+k2+1=tan∠BEC=BKEK=-(k+2), 解得:k=-4-73或-4+73(舍去); 故k的值为:-3或-4-73. 声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布 日期:2019/6/30 9:38:05;用户:中考培优辅导;邮箱:p5193@xyh.com;学号:27411521查看更多