2020年北京市中考数学真题试题(含答案)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2020年北京市中考数学真题试题(含答案)

2020 年北京市中考数学真题试题(含答案) 一.选择题(第 1-8 题均有四个选项,符合题意的选项只有一个) 1.如图是某几何体的三视图,该几何体是( ) A. 圆柱 B. 圆锥 C. 三棱锥 D. 长方体 【答案】D 【解析】 【分析】 根据三视图都是长方形即可判断该几何体为长方体. 【详解】解:长方体的三视图都是长方形, 故选 D. 【点睛】本题考查了几何体的三视图,解题的关键是熟知基本几何体的三视图,正确判断几何体. 2.2020 年 6 月 23 日,北斗三号最后一颗全球组网卫星从西昌发射中心发射升空,6 月 30 日成功定点于距离 地球 36000 公里的地球同步轨道.将 36000 用科学记数法表示应为( ) A. 50.3610 B. 53 . 6 1 0 C. 43 . 6 1 0 D. 43 6 1 0 【答案】C 【解析】 【分析】 科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.当原数绝对值大于 1 时,n 是正数; 当原数绝对值小于 1 时,n 是负数. 【详解】解: 36000= , 故选:C. 【点睛】本题考查用科学记数法表示绝对值大于 1 的数,熟练掌握科学记数法的表示形式是解题的关键. 3.如图,AB 和 CD 相交于点 O,则下列结论正确的是( ) A. ∠1=∠2 B. ∠2=∠3 C. ∠1>∠4+∠5 D. ∠2<∠5 【答案】A 【解析】 【分析】 根据对顶角性质、三角形外角性质分别进行判断,即可得到答案. 【详解】解:由两直线相交,对顶角相等可知 A 正确; 由三角形的一个外角等于它不相邻的两个内角的和可知 B 选项为∠2>∠3, C 选项为∠1=∠4+∠5, D 选项为∠2>∠5. 故选:A. 【点睛】本题考查了三角形的外角性质,对顶角性质,解题的关键是熟练掌握三角形的外角性质进行判断. 4.下列图形中,既是中心对称图形也是轴对称图形的是( ) A. B. C. D. 【答案】D 【解析】 【分析】 根据中心对称图形以及轴对称图形的定义即可作出判断. 【详解】解:A、是轴对称图形,不是中心对称图形,故选项错误; B、不是轴对称图形,也不是中心对称图形,故选项错误; C、不是轴对称图形,是中心对称图形,故选项错误; D、既是轴对称图形,又是中心对称图形,故选项正确. 故选:D. 【点睛】本题主要考查了中心对称图形和轴对称图形的定义,正确理解定义是关键. 5.正五边形的外角和为( ) A. 180° B. 360° C. 540° D. 720° 【答案】B 【解析】 【分析】 根据多边形的外角和定理即可得. 【详解】任意多边形的外角和都为 360 ,与边数无关 故选:B. 【点睛】本题考查了多边形的外角和定理,熟记多边形的外角和定理是解题关键. 6.实数 a 在数轴上的对应点的位置如图所示.若实数 b 满足 a b a   ,则 的值可以是( ) A. 2 B. -1 C. -2 D. -3 【答案】B 【解析】 【分析】 先根据数轴的定义得出 a 的取值范围,从而可得出 b 的取值范围,由此即可得. 【详解】由数轴的定义得: 12a 21a   2a 又 aba b 到原点的距离一定小于 2 观察四个选项,只有选项 B 符合 故选:B. 【点睛】本题考查了数轴的定义,熟记并灵活运用数轴的定义是解题关键. 7.不透明的袋子中装有两个小球,上面分别写着“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一 个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为 3 的概率是( ) A. 1 4 B. 1 3 C. 1 2 D. 2 3 【答案】C 【解析】 【分析】 先根据题意画出树状图,再利用概率公式计算即可. 【详解】解:画树状图如下: 所以共 4 种情况:其中满足题意的有两种, 所以两次记录的数字之和为 3 的概率是 21.42 故选 C. 【点睛】本题考查的是画树状图求解概率,掌握画树状图求概率是解题的关键. 8.有一个装有水的容器,如图所示.容器内的水面高度是 10cm,现向容器内注水,并同时开始计时,在注 水过程中,水面高度以每秒 0.2cm 的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水 时间满足的函数关系是( ) A. 正比例函数关系 B. 一次函数关系 C. 二次函数关系 D. 反比例函数关系 【答案】B 【解析】 【分析】 设水面高度为 ,hcm 注水时间为 t 分钟,根据题意写出 h 与 的函数关系式,从而可得答案. 【详解】解:设水面高度为 注水时间为 分钟, 则由题意得: 0.2 10,ht 所以容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系, 故选 B. 【点睛】本题考查的是列函数关系式,判断两个变量之间的函数关系,掌握以上知识是解题的关键. 二、填空题 9.若代数式 1 7x  有意义,则实数 x 的取值范围是_____. 【答案】 7x  【解析】 【分析】 根据分式有意义的条件列出不等式,解不等式即可. 【详解】∵代数式 有意义,分母不能为 0,可得 70x ,即 , 故答案为: . 【点睛】本题考查的是分式有意义的条件,掌握分式分母不为 0 是解题的关键. 10.已知关于 的方程 2 20x x k   有两个相等的实数根,则 k 的值是______. 【答案】1 【解析】 【分析】 由一元二次方程根的判别式列方程可得答案. 【详解】解:一元二次方程有两个相等的实数根, 可得判别式 0 , ∴ 4 4 0k, 解得: 1k  . 故答案为: 1. 【点睛】本题考查的是一元二次方程根的判别式,掌握根的判别式的含义是解题的关键. 11.写出一个比 2 大且比 15 小的整数______. 【答案】2(或 3) 【解析】 【分析】 先分别求出 与 在哪两个相邻的整数之间,依此即可得到答案. 【详解】∵1< <2,3< <4, ∴比 2 大且比 15 小的整数是 2 或 3. 故答案为:2(或 3) 【点睛】本题主要考查了实数的大小比较,也考查了无理数的估算的知识,分别求出 与 在哪两个 相邻的整数之间是解答此题的关键. 12.方程组 1 37 xy xy    的解为________. 【答案】 2 1 x y    【解析】 【分析】 用加减消元法解二元一次方程组即可. 【详解】解:两个方程相加可得 48x  , ∴ 2x  , 将 代入 1xy, 可得 1y  , 故答案为: . 【点睛】本题考查解二元一次方程组,熟练掌握加减消元法解二元一次方程组的步骤是解题的关键. 13.在平面直角坐标系 x O y 中,直线 yx 与双曲线 my x 交于 A,B 两点.若点 A,B 的纵坐标分别为 12,yy, 则 12yy 的值为_______. 【答案】0 【解析】 【分析】 根据“正比例函数与反比例函数的交点关于原点对称”即可求解. 【详解】解:∵正比例函数和反比例函数均关于坐标原点 O 对称, ∴正比例函数和反比例函数的交点亦关于坐标原点中心对称, ∴ 120yy, 故答案为:0. 【点睛】本题考查正比例函数和反比例函数的图像性质,根据正比例函数与反比例函数的交点关于原点对 称这个特点即可解题. 14.在 ABC 中,AB=AC,点 D 在 BC 上(不与点 B,C 重合).只需添加一个条件即可证明 ABD≌ ACD, 这个条件可以是________(写出一个即可) 【答案】∠BAD=∠CAD(或 BD=CD) 【解析】 【分析】 证明 ABD≌ ACD,已经具备 ,,ABACADAD 根据选择的判定三角形全等的判定方法可得答案. 【详解】解: ,,ABACADAD  要使 ,ABD ACD≌ 则可以添加:∠BAD=∠CAD, 此时利用边角边判定: 或可以添加: ,BDCD 此时利用边边边判定: 故答案为:∠BAD=∠CAD 或( .BDCD ) 【点睛】本题考查 的 是三角形全等的判定,属开放性题,掌握三角形全等的判定是解题的关键. 15.如图所示的网格是正方形网格,A,B,C,D 是网格交点,则 ABC 的面积与 ABD 的面积的大小关系 为: ABCS ______ ABDS (填“>”,“=”或“<”) 【答案】= 【解析】 【分析】 在网格中分别计算出三角形的面积,然后再比较大小即可. 【详解】解:如下图所示,设小正方形网格的边长为 1 个单位, 由网格图可得 1 4242ABCS  个平方单位, 123 111=52101513224 222ABD SSSS , 故有 ABCS = ABDS . 故答案为:“=” 【点睛】本题考查了三角形的面积公式,在网格中当三角形的底和高不太好求时可以采用割补的方式进行 求解,用大的矩形面积减去三个小三角形的面积即得到△ABD 的面积. 16.如图是某剧场第一排座位分布图:甲、乙、丙、丁四人购票,所购票分别为 2,3,4,5.每人选座购票 时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后 顺序购票,那么甲甲购买 1,2 号座位的票,乙购买 3,5,7 号座位的票,丙选座购票后,丁无法购买到第 一排座位的票.若丙第一购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先 后顺序______. 【答案】丙,丁,甲,乙 【解析】 【分析】 根据甲、乙、丙、丁四人购票,所购票数量分别为 2,3,4,5 可得若丙第一购票,要使其他三人都能购买 到第一排座位的票,那么丙选座要尽可能得小,因此丙先选择:1,2,3,4.丁所购票数最多,因此应让 丁第二购票,据此判断即可. 【详解】解:丙先选择:1,2,3,4. 丁选:5,7,9,11,13. 甲选:6,8. 乙选:10,12,14. ∴顺序为丙,丁,甲,乙. (答案不唯一) 【点睛】本题考查有理数的加法,认真审题,理解题意是解题的关键. 三、解答题(解答应写出文字说明、演算步骤或证明过程) 17.计算: 11( ) 18 | 2 | 6sin 453       【答案】5 【解析】 【分析】 分别计算负整数指数幂,算术平方根,绝对值,锐角三角函数,再合并即可得到答案. 【详解】解:原式= 233226 2 332232 5. 【点睛】本题考查的是负整数指数幂,算术平方根,绝对值,锐角三角函数,以及合并同类二次根式,掌 握以上的知识是解题的关键. 18.解不等式组: 5 3 2 21 32 xx xx    【答案】12x 【解析】 【分析】 分别解每一个不等式,然后即可得出解集. 【详解】解: 5 3 2 21 32 xx xx    ① ② 解不等式①得: 1x  , 解不等式②得: 2x  , ∴此不等式组的解集为 12x. 【点睛】本题考查了解一元一次不等式组,掌握不等式的解法是解题关键. 19.已知 25 1 0xx   ,求代数式(32)(32)(2)xxxx 的 值. 【答案】 210 2 4xx,-2 【解析】 【分析】 先按照整式的混合运算化简代数式,注意利用平方差公式进行简便运算,再把 变形后,整体 代入求值即可. 【详解】解:原式= 229 4 2x x x   21 0 2 4 .xx   ∵ , ∴ 251xx, ∴ 21022xx, ∴原式= 242 . 【点睛】本题考查的是整式化简求值,掌握利用平方差公式进行简便运算,整体代入求值是解题的关键. 20.已知:如图, ABC 为锐角三角形,AB=BC,CD∥AB. 求作:线段 BP,使得点 P 在直线 CD 上,且∠ABP= 1 2 BAC . 作法:①以点 A 为圆心,AC 长为半径画圆,交直线 CD 于 C,P 两点;②连接 BP.线段 BP 就是所求作线 段. (1)使用直尺和圆规,依作法补全图形(保留作图痕迹) (2)完成下面的证明. 证明:∵CD∥AB, ∴∠ABP= . ∵AB=AC, ∴点 B 在⊙A 上. 又∵∠BPC= 1 2 ∠BAC( )(填推理依据) ∴∠ABP= 1 2 ∠BAC 【答案】(1)见解析;(2)∠BPC,在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半 【解析】 【分析】 (1)按照作法的提示,逐步作图即可; (2)利用平行线的性质证明: ,A B P B P C   再利用圆的性质得到:∠BPC= ∠BAC,从而可得答案. 【详解】解:(1)依据作图提示作图如下: (2)证明:∵CD∥AB, ∴∠ABP= BPC . ∵AB=AC, ∴点 B 在⊙A 上. 又∵∠BPC= ∠BAC(在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半. )(填推理依据) ∴∠ABP= ∠BAC 故答案为:∠BPC;在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半. 【点睛】本题考查的是作图中复杂作图,同时考查了平行线的性质,圆的基本性质:在同圆或等圆中同弧 所对的圆周角等于它所对圆心角的一半.掌握以上知识是解题的关键. 21.如图,菱形 ABCD 的对角线 AC,BD 相交于点 O,E 是 AD 的中点,点 F,G 在 AB 上,EF⊥AB,OG∥EF. (1)求证:四边形 OEFG 是矩形; (2)若 AD=10,EF=4,求 OE 和 BG 的长. 【答案】(1)见解析;(2)OE=5,BG=2. 【解析】 【分析】 (1)先证明 EO 是△ DAB 的中位线,再结合已知条件 OG∥EF,得到四边形 OEFG 是平行四边形,再由条件 EF⊥AB,得到四边形 OEFG 是矩形; (2)先求出 AE=5,由勾股定理进而得到 AF=3,再由中位线定理得到 OE= 1 2 AB= AD=5,得到 FG=5,最 后 BG=AB-AF-FG=2. 【详解】解:(1)证明:∵四边形 ABCD 为 菱形, ∴点 O 为 BD 的中点, ∵点 E 为 AD 中点, ∴OE 为△ ABD 的中位线, ∴OE∥FG, ∵OG∥EF,∴四边形 OEFG 为平行四边形 ∵EF⊥AB,∴平行四边形 OEFG 为矩形. (2)∵点 E 为 AD 的中点,AD=10, ∴AE= 1 52 AD  ∵∠EFA=90°,EF=4, ∴在 Rt△ AEF 中, 2222 543AFAEEF . ∵四边形 ABCD 为菱形, ∴AB=AD=10, ∴OE= AB=5, ∵四边形 OEFG 为矩形, ∴FG=OE=5, ∴BG=AB-AF-FG=10-3-5=2. 故答案为:OE=5,BG=2. 【点睛】本题考查了矩形的性质和判定,菱形的性质、勾股定理等知识点,特殊四边形的性质和判定属于 中考常考题型,需要重点掌握. 22.在平面直角坐标系 x O y 中,一次函数 ( 0 )y k x b k   的图象由函数 yx 的图象平移得到,且经过点 (1,2). (1)求这个一次函数的解析式; (2)当 1x  时,对于 x 的每一个值,函数 ( 0 )y m x m的值大于一次函数 y kx b的值,直接写出 m 的 取值范围. 【答案】(1) 1yx;( 2) 2m  【解析】 【分析】 (1)根据一次函数 ( 0 )y k x b k   由 平移得到可得出 k 值,然后将点(1,2)代入 y x b可得 b 值即可求出解析式; (2)由题意可得临界值为当 1x  时,两条直线都过点(1,2),即可得出当 12xm, 时, 都大于 ,根据 ,可得 可取值 2,可得出 m 的取值范围. 【详解】(1)∵一次函数 由 平移得到, ∴ 1k  , 将点(1,2)代入 可得 1b  , ∴一次函数的解析式为 ; (2)当 时,函数 的 函数值都大于 ,即图象在 上方,由下图可知: 临界值为当 时,两条直线都过点(1,2), ∴当 12xm, 时, ( 0 )y m x m都大于 1yx, 又∵ 1x  , ∴ m 可取值 2,即 2m  , ∴ 的取值范围为 2m  . 【点睛】本题考查了求一次函数解析式,函数图像的平移,一次函数的图像,找出临界点是解题关键. 23.如图,AB 为⊙O 的直径,C 为 BA 延长线上一点,CD 是⊙O 的切线,D 为切点,OF⊥AD 于点 E,交 CD 于点 F. (1)求证:∠ADC=∠AOF; (2)若 sinC= 1 3 ,BD=8,求 EF 的长. 【答案】(1)见解析;(2)2. 【解析】 【分析】 (1)连接 OD,根据 CD 是⊙O 的切线,可推出∠ADC+∠ODA=90°,根据 OF⊥AD,∠AOF+∠DAO=90°, 根据 OD=OA,可得∠ODA=∠DAO,即可证明; (2)设半径为 r,根据在 Rt△OCD 中,sin 1 3C  ,可得 3ODrOCr, ,AC=2r,由 AB 为⊙O 的直 径,得出∠ADB=90°,再根据推出 OF⊥AD,OF∥BD,然后由平行线分线段成比例定理可得 1 2 OEOA BDAB, 求出 OE, 3 4 OFOC BDBC,求出 OF,即可求出 EF. 【详解】(1)证明:连接 OD, ∵CD 是⊙O 的切线, ∴OD⊥CD, ∴∠ADC+∠ODA=90°, ∵OF⊥AD, ∴∠AOF+∠DAO=90°, ∵OD=OA, ∴∠ODA=∠DAO, ∴∠ADC=∠AOF; (2)设半径为 r, 在 Rt△OCD 中, 1sin 3C  , ∴ 1 3 OD OC = , ∴ 3OD r OC r, , ∵OA=r, ∴AC=OC-OA=2r, ∵AB 为⊙O 的直径, ∴∠ADB=90°, 又∵OF⊥AD, ∴OF∥BD, ∴ 1 2 OEOA BDAB, ∴OE=4, ∵ 3 4 OFOC BDBC, ∴ 6OF  , ∴ 2EFOFOE . 【点睛】本题考查了平行线分线段成比例定理,锐角三角函数,切线的性质,直径所对的圆周角是 90°,灵 活运用知识点是解题关键. 24.小云在学习过程中遇到一个函数 21 | | ( 1)( 2)6y x x x x     .下面是小云对其探究的过程,请补充完 整: (1)当 20x   时,对于函数 1 ||yx ,即 1yx ,当 时, 1y 随 x 的增大而 ,且 1 0y  ; 对于函数 2 2 1y x x   ,当 时, 2y 随 的增大而 ,且 2 0y  ;结合上述分析,进一步探 究发现,对于函数 y ,当 时, 随 的增大而 . (2)当 0x  时,对于函数 ,当 时, 与 的几组对应值如下表: 0 1 2 1 3 2 2 5 2 3 0 1 16 1 6 7 16 1 95 48 7 2 综合上表,进一步探究发现,当 时, 随 的增大而增大.在平面直角坐标系 x O y 中,画出当 时的函数 的图象. (3)过点(0,m)( 0m  )作平行于 轴的直线 l ,结合(1)( 2)的分析,解决问题:若直线 与函数 21 || (1)(2)6yxxxx  的图象有两个交点,则 m 的最大值是 . 【答案】(1)减小,减小,减小;(2)见解析;(3) 7 3 【解析】 【分析】 (1)根据一次函数的性质,二次函数的性质分别进行判断,即可得到答案; (2)根据表格的数据,进行描点,连线,即可画出函数的图像; (3)根据函数图像和性质,当 2x  时,函数有最大值,代入计算即可得到答案. 【详解】解:(1)根据题意,在函数 中, ∵ 10k    , ∴函数 1yx 在 20x   中, 1y 随 x 的增大而减小; ∵ 22 2 131() 24yxxx , ∴对称轴为: 1x  , ∴ 2 2 1y x x   在 中, 2y 随 的增大而减小; 综合上述, 21 ||(1)6yxxx 在 中, y 随 的增大而减小; 故答案为:减小,减小,减小; (2)根据表格描点,连成平滑的曲线,如图: (3)由(2)可知,当 0x  时, 随 的增大而增大,无最大值; 由(1)可知 在 中, 随 的增大而减小; ∴在 中,有 当 2x  时, 7 3y  , ∴m 的最大值为 7 3 ; 故答案为: . 【点睛】本题考查了二次函数的性质,一次函数的性质,以及函数的最值问题,解题的关键是熟练掌握题 意,正确的作出函数图像,并求函数的最大值. 25.小云统计了自己所住小区 5 月 1 日至 30 日的厨余垃圾分出量(单位:千克),相关信息如下: a .小云所住小区 5 月 1 日至 30 日的厨余垃圾分出量统计图: b .小云所住小区 5 月 1 日至 30 日分时段的厨余垃圾分出量的平均数如下: 时段 1 日至 10 日 11 日至 20 日 21 日至 30 日 平均数 100 170 250 (1)该小区 5 月 1 日至 30 日的厨余垃圾分出量的平均数约为 (结果取整数) (2)已知该小区 4 月的厨余垃圾分出量的平均数为 60,则该小区 5 月 1 日至 30 日的厨余垃圾分出量的平 均数约为 4 月的 倍(结果保留小数点后一位); (3)记该小区 5 月 1 日至 10 日的厨余垃圾分出量的方差为 2 1 ,s 5 月 11 日至 20 日的厨余垃圾分出量的方差 为 2 2s ,5 月 21 日至 30 日的厨余垃圾分出量的方差为 2 3s .直接写出 222 123,,sss的大小关系. 【答案】(1)173;( 2)2.9 倍;(3) 222 123sss 【解析】 【分析】 (1)利用加权平均数的计算公式进行计算,即可得到答案; (2)利用 5 月份的平均数除以 4 月份的平均数,即可得到答案; (3)直接利用点状图和方差的意义进行分析,即可得到答案. 【详解】解:(1)平均数: 1 [(100 10) (170 10) (250 10)] 17330        (千克); 故答案为:173; (2)173 60 2.9 倍; 故答案为:2.9; (3)方差反应数据的稳定程度,即从点状图中表现数据的离散程度, 所以从图中可知: 222 123sss; 【点睛】本题考查了方差的意义,平均数,以及数据的分析处理,解题的关键是熟练掌握题意,正确的分 析数据的联系. 26.在平面直角坐标系 xOy 中, 1122(,),(,)MxyNxy 为 抛物线 2 (0)yaxbxca 上任意两点,其中 12xx . (1)若抛物线的对称轴为 1x  ,当 12,xx为何值时, 12;y y c (2)设抛物线的对称轴为 xt .若对于 123xx,都有 12yy ,求 t 的取值范围. 【答案】(1) 120, 2xx;( 2) 3 2t  【解析】 【分析】 (1)根据抛物线解析式得抛物线必过(0,c),因为 12y y c,抛物线的对称轴为 ,可得点 M,N 关于 对称,从而得到 的值; (2)根据题意知,抛物线开口向上,对称轴为 ,分 3 种情况讨论,情况 1:当 都位于对称轴右 侧时,情况 2:当 都位于对称轴左侧时,情况 3:当 位于对称轴两侧时,分别求出对应的 t 值,再 进行总结即可. 【详解】解:(1)当 x=0 时,y=c, 即抛物线必过(0,c), ∵ ,抛物线的对称轴为 , ∴点 M,N 关于 对称, 又∵ , ∴ 1 0x  , 2 2x  ; (2)由题意知,a>0, ∴抛物线开口向上 ∵抛物线的对称轴为 , ∴情况 1:当 都位于对称轴右侧时,即当 1xt 时, 恒成立 情况 2:当 12,xx都位于对称轴左侧时,即 1x < 2,t x t  时, 12yy 恒不成立 情况 3:当 位于对称轴两侧时,即当 1x  2,t x t  时,要使 ,必有 12x t x t   ,即    22 12xtxt 解得 122x x t, ∴3≥2t, ∴ 3 2t  综上所述, . 【点睛】本题考查了二次函数图象的性质.解题的关键是学会分类讨论的思想及数形结合思想. 27.在 ABC 中,∠C=90°,AC>BC,D 是 AB 的中点.E 为直线上一动点,连接 DE,过点 D 作 DF⊥DE, 交直线 BC 于点 F,连接 EF. (1)如图 1,当 E 是线段 AC 的中点时,设 ,A E a B F b,求 EF 的长(用含 ,ab的式子表示); (2)当点 E 在线段 CA 的延长线上时,依题意补全图 2,用等式表示线段 AE,EF,BF 之间的数量关系, 并证明. 【答案】(1) 22ab ;( 2)图见解析, 222EFAEBF,证明见解析. 【解析】 【分析】 (1)先根据中位线定理和线段中点定义可得 //DEBC , 1 2DEBC ,CEAEa,再根据平行四边形 的性质、矩形的判定与性质可得 DE CF ,从而可得CF BF b,然后利用勾股定理即可得; (2)如图(见解析),先根据平行线的性质可得 EAD GBD   , DEA DGB   ,再根据三角形全等 的判定定理与性质可得 ED GD , AE BG ,然后根据垂直平分线的判定与性质可得 EF FG ,最后 在 R t B G F 中,利用勾股定理、等量代换即可得证. 【详解】(1)∵D 是 AB 的中点,E 是线段 AC 的中点 ∴DE 为 ABC 的中位线,且 C E A E a ∴ //D E B C , 1 2D E B C ∵ 90C   ∴ 18090DECC ∵ DF DE ∴ 90EDF   ∴四边形 DECF 为矩形 ∴ D E C F 11()22CFBCBFCF ∴ C F B F b 则在 R t C E F 中, 2222EFCECFab ; (2)过点 B 作 AC 的平行线交 ED 的延长线于点 G,连接 FG ∵ //B G A C ∴ EADGBD  , DEADGB  ∵D 是 AB 的中点 ∴ ADBD 在 EAD 和 G B D△ 中, EADGBD DEADGB ADBD       ∴ ()EADGBDAAS ∴ EDGD , AEBG 又∵ ∴DF 是线段 EG 的垂直平分线 ∴ EFFG ∵ , ∴ 90GBFC  在 中,由勾股定理得: 2 2 2FG BG BF ∴ 222EFAEBF. 【点睛】本题考查了中位线定理、矩形的判定与性质、三角形全等的判定定理与性质、垂直平分线的判定 与性质、勾股定理等知识点,较难的是题(2),通过作辅助线,构造全等三角形和直角三角形是解题关键. 28.在平面直角坐标系 x O y 中,⊙O 的半径为 1,A,B 为⊙O 外两点,AB=1.给出如下定义:平移线段 AB, 得到⊙O 的弦 AB( ,AB分别为点 A,B 的对应点),线段 AA 长度的最小值称为线段 AB 到⊙O 的“平 移距离”. (1)如图,平移线段 AB 到⊙O 的长度为 1 的弦 12PP 和 34PP,则这两条弦的位置关系是 ;在点 1234,,,PPPP 中,连接点 A 与点 的线段的长度等于线段 AB 到⊙O 的“平移距离”; (2)若点 A,B 都在直线 323yx上,记线段 AB 到⊙O 的“平移距离”为 1d ,求 的最小值; (3)若点 A 的坐标为 32, 2   ,记线段 AB 到⊙O 的“平移距离”为 2d ,直接写出 的取值范围. 【答案】(1)平行,P3;( 2) 3 2 ;( 3) 2 3 39 22d 【解析】 【分析】 (1)根据圆的性质及“平移距离”的定义填空即可; (2)过点 O 作 OE⊥AB 于点 E,交弦 CD 于点 F,分别求出 OE、OF 的长,由 1d O E O F得到 1d 的最 小值; (3)线段 AB 的位置变换,可以看作是以点 A 32, 2   为圆心,半径为 1 的圆,只需在⊙O 内找到与之平行, 且长度为 1 的弦即可.平移距离 2d 的最大值即点 A,B 点的位置,由此得出 的取值范围. 【详解】解:(1)平行;P3; (2)如图,线段 AB 在直线 3 2 3yx 上,平移之后与圆相交,得到的弦为 CD,CD∥AB,过点 O 作 OE⊥AB 于点 E,交弦 CD 于点 F,OF⊥CD,令 0y  ,直线与 x 轴交点为(-2,0),直线与 x 轴夹角为 60°,∴ 2sin603OE . 由垂径定理得: 2 2 13 22OFOCCD   , ∴ 1 3 2dOEOF ; (3)线段 AB 的位置变换,可以看作是以点 A 为圆心,半径为 1 的圆,只需在⊙O 内找到与之平行, 且长度为 1 的弦即可; 点 A 到 O 的距离为 2 2 352 22AO   . 如图,平移距离 2d 的最小值即点 A 到⊙O 的最小值: 53122 ; 平移距离 的最大值线段是下图 AB 的情况,即当 A1,A2 关于 OA 对称,且 A1B2⊥A1A2 且 A1B2=1 时.∠B2A2A1=60°,则∠OA2A1=30°, ∵OA2=1,∴OM= 1 2 , A2M= 3 2 , ∴MA=3,AA2= 2 2 3393 22  , ∴ 的取值范围为: 2 3 39 22d . 【点睛】本题考查圆的基本性质及与一次函数的综合运用,熟练掌握圆的基本性质、点与圆的位置关系、 直线与圆的位置关系是解题的关键.
查看更多

相关文章

您可能关注的文档