- 2021-11-10 发布 |
- 37.5 KB |
- 27页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2019年甘肃省中考数学试卷含答案
2019年甘肃省中考数学试卷 一、选择题:本大题共10小题,每小题3分,共30分,每小只有一个正确选项. 1.(3分)下列四个图案中,是中心对称图形的是( ) A. B. C. D. 2.(3分)在0,2,﹣3,-12这四个数中,最小的数是( ) A.0 B.2 C.﹣3 D.-12 3.(3分)使得式子x4-x有意义的x的取值范围是( ) A.x≥4 B.x>4 C.x≤4 D.x<4 4.(3分)计算(﹣2a)2•a4的结果是( ) A.﹣4a6 B.4a6 C.﹣2a6 D.﹣4a8 5.(3分)如图,将一块含有30°的直角三角板的顶点放在直尺的一边上,若∠1=48°,那么∠2的度数是( ) A.48° B.78° C.92° D.102° 6.(3分)已知点P(m+2,2m﹣4)在x轴上,则点P的坐标是( ) A.(4,0) B.(0,4) C.(﹣4,0) D.(0,﹣4) 7.(3分)若一元二次方程x2﹣2kx+k2=0的一根为x=﹣1,则k的值为( ) A.﹣1 B.0 C.1或﹣1 D.2或0 8.(3分)如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,则∠CDB=( ) A.54° B.64° C.27° D.37° 9.(3分)甲,乙两个班参加了学校组织的2019年“国学小名士”国学知识竞赛选拔赛,他们成绩的平均数、中位数、方差如下表所示,规定成绩大于等于95分为优异,则下列说法正确的是( ) 参加人数 平均数 中位数 方差 甲 45 94 93 5.3 乙 45 94 95 4.8 A.甲、乙两班的平均水平相同 B.甲、乙两班竞赛成绩的众数相同 C.甲班的成绩比乙班的成绩稳定 D.甲班成绩优异的人数比乙班多 10.(3分)如图是二次函数y=ax2+bx+c的图象,对于下列说法:①ac>0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤当x>0时,y随x的增大而减小,其中正确的是( ) A.①②③ B.①②④ C.②③④ D.③④⑤ 二、填空题:本大题共8小题,每小题3分,共24分. 11.(3分)分解因式:x3y﹣4xy= . 12.(3分)不等式组2-x≥02x>x-1的最小整数解是 . 13.(3分)分式方程3x+1=5x+2的解为 . 14.(3分)在△ABC中∠C=90°,tanA=33,则cosB= . 15.(3分)已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为 . 16.(3分)如图,在Rt△ABC中,∠C=90°,AC=BC=2,点D是AB的中点,以A、B为圆心,AD、BD长为半径画弧,分别交AC、BC于点E、F,则图中阴影部分的面积为 . 17.(3分)如图,在矩形ABCD中,AB=10,AD=6,E为BC上一点,把△CDE沿DE折叠,使点C落在AB边上的F处,则CE的长为 . 18.(3分)如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n幅图中有2019个菱形,则n= . 三、解答题(一)本大共5小题,共26分.解答应写出必要的文字说明,证明过程成演算步骤. 19.(4分)计算:(-12)﹣2+(2019﹣π)0-33tan60°﹣|﹣3|. 20.(4分)如图,在△ABC中,点P是AC上一点,连接BP,求作一点M,使得点M到AB和AC两边的距离相等,并且到点B和点P的距离相等.(不写作法,保留作图痕迹) 21.(6分)中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题,原文:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车? 22.(6分)为了保证人们上下楼的安全,楼梯踏步的宽度和高度都要加以限制.中小学楼梯宽度的范围是260mm~300mm含(300mm),高度的范围是120mm~150mm(含150mm).如图是某中学的楼梯扶手的截面示意图,测量结果如下:AB,CD分别垂直平分踏步EF,GH,各踏步互相平行,AB=CD,AC=900mm,∠ACD=65°,试问该中学楼梯踏步的宽度和高度是否符合规定.(结果精确到1mm,参考数据:sin65°≈0.906,cos65°≈0.423) 23.(6分)在甲乙两个不透明的口袋中,分别有大小、材质完全相同的小球,其中甲口袋中的小球上分别标有数字1,2,3,4,乙口袋中的小球上分别标有数字2,3,4,先从甲袋中任意摸出一个小球,记下数字为m,再从乙袋中摸出一个小球,记下数字为n. (1)请用列表或画树状图的方法表示出所有(m,n)可能的结果; (2)若m,n都是方程x2﹣5x+6=0的解时,则小明获胜;若m,n都不是方程x2﹣5x+6=0的解时,则小利获胜,问他们两人谁获胜的概率大? 四、解答题(二):本大题共5小题,共40分解答应写出必要的文字说明,证明过程或演算步骤 24.(7分)良好的饮食对学生的身体、智力发育和健康起到了极其重要的作用,荤菜中蛋白质、钙、磷及脂溶性维生素优于素食,而素食中不饱和脂肪酸、维生素和纤维素又优于荤食,只有荤食与素食适当搭配,才能强化初中生的身体素质.某校为了了解学生的体质健康状况,以便食堂为学生提供合理膳食,对本校七年级、八年级学生的体质健康状况进行了调查,过程如下: 收集数据: 从七、八年级两个年级中各抽取15名学生,进行了体质健康测试,测试成绩(百分制)如下: 七年级:74 81 75 76 70 75 75 79 81 70 74 80 91 69 82 八年级:81 94 83 77 83 80 81 70 81 73 78 82 80 70 50 整理数据: 年级 x<60 60≤x<80 80≤x<90 90≤x≤100 七年级 0 10 4 1 八年级 1 5 8 1 (说明:90分及以上为优秀,80~90分(不含90分)为良好,60~80分(不含80分)为及格,60分以下为不及格) 分析数据: 年级 平均数 中位数 众数 七年级 75 75 八年级 77.5 80 得出结论: (1)根据上述数据,将表格补充完整; (2)可以推断出 年级学生的体质健康状况更好一些,并说明理由; (3)若七年级共有300名学生,请估计七年级体质健康成绩优秀的学生人数. 25.(7分)如图,一次函数y=kx+b的图象与反比例函数y=mx的图象相交于A(﹣1,n)、B(2,﹣1)两点,与y轴相交于点C. (1)求一次函数与反比例函数的解析式; (2)若点D与点C关于x轴对称,求△ABD的面积; (3)若M(x1,y1)、N(x2,y2)是反比例函数y=mx上的两点,当x1<x2<0时,比较y2与y1的大小关系. 26.(8分)如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G. (1)证明:△ADG≌△DCE; (2)连接BF,证明:AB=FB. 27.(8分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E. (1)求证:∠A=∠ADE; (2)若AD=8,DE=5,求BC的长. 28.(10分)如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C. (1)求二次函数的解析式; (2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标; (3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标. 2019年甘肃省中考数学试卷 参考答案与试题解析 一、选择题:本大题共10小题,每小题3分,共30分,每小只有一个正确选项. 1.(3分)下列四个图案中,是中心对称图形的是( ) A. B. C. D. 【解答】解:A.此图案是中心对称图形,符合题意; B.此图案不是中心对称图形,不合题意; C.此图案不是中心对称图形,不合题意; D.此图案不是中心对称图形,不合题意; 故选:A. 2.(3分)在0,2,﹣3,-12这四个数中,最小的数是( ) A.0 B.2 C.﹣3 D.-12 【解答】解:根据实数比较大小的方法,可得 ﹣3<-12<0<2, 所以最小的数是﹣3. 故选:C. 3.(3分)使得式子x4-x有意义的x的取值范围是( ) A.x≥4 B.x>4 C.x≤4 D.x<4 【解答】解:使得式子x4-x有意义,则:4﹣x>0, 解得:x<4, 即x的取值范围是:x<4. 故选:D. 4.(3分)计算(﹣2a)2•a4的结果是( ) A.﹣4a6 B.4a6 C.﹣2a6 D.﹣4a8 【解答】解:(﹣2a)2•a4=4a2•a4=4a6. 故选:B. 5.(3分)如图,将一块含有30°的直角三角板的顶点放在直尺的一边上,若∠1=48°,那么∠2的度数是( ) A.48° B.78° C.92° D.102° 【解答】解:∵将一块含有30°的直角三角板的顶点放在直尺的一边上,∠1=48°, ∴∠2=∠3=180°﹣48°﹣30°=102°. 故选:D. 6.(3分)已知点P(m+2,2m﹣4)在x轴上,则点P的坐标是( ) A.(4,0) B.(0,4) C.(﹣4,0) D.(0,﹣4) 【解答】解:∵点P(m+2,2m﹣4)在x轴上, ∴2m﹣4=0, 解得:m=2, ∴m+2=4, 则点P的坐标是:(4,0). 故选:A. 7.(3分)若一元二次方程x2﹣2kx+k2=0的一根为x=﹣1,则k的值为( ) A.﹣1 B.0 C.1或﹣1 D.2或0 【解答】解:把x=﹣1代入方程得:1+2k+k2=0, 解得:k=﹣1, 故选:A. 8.(3分)如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,则∠CDB=( ) A.54° B.64° C.27° D.37° 【解答】解:∵∠AOC=126°, ∴∠BOC=180°﹣∠AOC=54°, ∵∠CDB=12∠BOC=27°. 故选:C. 9.(3分)甲,乙两个班参加了学校组织的2019年“国学小名士”国学知识竞赛选拔赛,他们成绩的平均数、中位数、方差如下表所示,规定成绩大于等于95分为优异,则下列说法正确的是( ) 参加人数 平均数 中位数 方差 甲 45 94 93 5.3 乙 45 94 95 4.8 A.甲、乙两班的平均水平相同 B.甲、乙两班竞赛成绩的众数相同 C.甲班的成绩比乙班的成绩稳定 D.甲班成绩优异的人数比乙班多 【解答】解:A、甲、乙两班的平均水平相同;正确; B、甲、乙两班竞赛成绩的众数相同;不正确; C、甲班的成绩比乙班的成绩稳定;不正确; D、甲班成绩优异的人数比乙班多;不正确; 故选:A. 10.(3分)如图是二次函数y=ax2+bx+c的图象,对于下列说法:①ac>0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤当x>0时,y随x的增大而减小,其中正确的是( ) A.①②③ B.①②④ C.②③④ D.③④⑤ 【解答】解:①由图象可知:a>0,c<0, ∴ac<0,故①错误; ②由于对称轴可知:-b2a<1, ∴2a+b>0,故②正确; ③由于抛物线与x轴有两个交点, ∴△=b2﹣4ac>0,故③正确; ④由图象可知:x=1时,y=a+b+c<0, 故④正确; ⑤当x>-b2a时,y随着x的增大而增大,故⑤错误; 故选:C. 二、填空题:本大题共8小题,每小题3分,共24分. 11.(3分)分解因式:x3y﹣4xy= xy(x+2)(x﹣2) . 【解答】解:x3y﹣4xy, =xy(x2﹣4), =xy(x+2)(x﹣2). 12.(3分)不等式组2-x≥02x>x-1的最小整数解是 0 . 【解答】解:不等式组整理得:x≤2x>-1, ∴不等式组的解集为﹣1<x≤2, 则最小的整数解为0, 故答案为:0 13.(3分)分式方程3x+1=5x+2的解为 12 . 【解答】解:去分母得:3x+6=5x+5, 解得:x=12, 经检验x=12是分式方程的解. 故答案为:12. 14.(3分)在△ABC中∠C=90°,tanA=33,则cosB= 12 . 【解答】解:利用三角函数的定义及勾股定理求解. ∵在Rt△ABC中,∠C=90°,tanA=33, 设a=3x,b=3x,则c=23x, ∴cosB=ac=12. 故答案为:12. 15.(3分)已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为 6cm2 . 【解答】解:该几何体是一个三棱柱,底面等边三角形边长为2cm,三棱柱的高为3,所以,其左视图的面积为3×2=6(cm2), 故答案为6cm2. 16.(3分)如图,在Rt△ABC中,∠C=90°,AC=BC=2,点D是AB的中点,以A、B为圆心,AD、BD长为半径画弧,分别交AC、BC于点E、F,则图中阴影部分的面积为 2-π4 . 【解答】解:在Rt△ABC中,∵∠ACB=90°,CA=CB=2, ∴AB=22,∠A=∠B=45°, ∵D是AB的中点, ∴AD=DB=2, ∴S阴=S△ABC﹣2•S扇形ADE=12×2×2﹣2×45⋅π⋅(2)2360=2-π4, 故答案为:2-π4 17.(3分)如图,在矩形ABCD中,AB=10,AD=6,E为BC上一点,把△CDE沿DE折叠,使点C落在AB边上的F处,则CE的长为 103 . 【解答】解:设CE=x,则BE=6﹣x由折叠性质可知,EF=CE=x,DF=CD=AB=10, 在Rt△DAF中,AD=6,DF=10, ∴AF=8, ∴BF=AB﹣AF=10﹣8=2, 在Rt△BEF中,BE2+BF2=EF2, 即(6﹣x)2+22=x2, 解得x=103, 故答案为103. 18.(3分)如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n幅图中有2019个菱形,则n= 1010 . 【解答】解:根据题意分析可得:第1幅图中有1个. 第2幅图中有2×2﹣1=3个. 第3幅图中有2×3﹣1=5个. 第4幅图中有2×4﹣1=7个. …. 可以发现,每个图形都比前一个图形多2个. 故第n幅图中共有(2n﹣1)个. 当图中有2019个菱形时, 2n﹣1=2019, n=1010, 故答案为:1010. 三、解答题(一)本大共5小题,共26分.解答应写出必要的文字说明,证明过程成演算步骤. 19.(4分)计算:(-12)﹣2+(2019﹣π)0-33tan60°﹣|﹣3|. 【解答】解:原式=4+1-33×3-3, =1. 20.(4分)如图,在△ABC中,点P是AC上一点,连接BP,求作一点M,使得点M到AB和AC两边的距离相等,并且到点B和点P的距离相等.(不写作法,保留作图痕迹) 【解答】解:如图,点M即为所求, 21.(6分)中国古代入民很早就在生产生活中发现了许多有趣的数学问题,其中《孙子算经》中有个问题,原文:今有三人共车,二车空;二人共车,九人步,问人与车各几何?译文为:今有若干人乘车,每3人共乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问共有多少人,多少辆车? 【解答】解:设共有x人, 根据题意得:x3+2=x-92, 去分母得:2x+12=3x﹣27, 解得:x=39, ∴39-92=15, 则共有39人,15辆车. 22.(6分)为了保证人们上下楼的安全,楼梯踏步的宽度和高度都要加以限制.中小学楼梯宽度的范围是260mm~300mm含(300mm),高度的范围是120mm~150mm(含150mm).如图是某中学的楼梯扶手的截面示意图,测量结果如下:AB,CD分别垂直平分踏步EF,GH,各踏步互相平行,AB=CD,AC=900mm,∠ACD=65°,试问该中学楼梯踏步的宽度和高度是否符合规定.(结果精确到1mm ,参考数据:sin65°≈0.906,cos65°≈0.423) 【解答】解:连接BD,作DM⊥AB于点M, ∵AB=CD,AB,CD分别垂直平分踏步EF,GH, ∴AB∥CD,AB=CD, ∴四边形ABCD是平行四边形, ∴∠C=∠ABD,AC=BD, ∵∠C=65°,AC=900, ∴∠ABD=65°,BD=900, ∴BM=BD•cos65°=900×0.423≈381,DM=BD•sin65°=900×0.906≈815, ∵381÷3=127,120<127<150, ∴该中学楼梯踏步的高度符合规定, ∵815÷3≈272,260<272<300, ∴该中学楼梯踏步的宽度符合规定, 由上可得,该中学楼梯踏步的宽度和高度都符合规定. 23.(6分)在甲乙两个不透明的口袋中,分别有大小、材质完全相同的小球,其中甲口袋中的小球上分别标有数字1,2,3,4,乙口袋中的小球上分别标有数字2,3,4,先从甲袋中任意摸出一个小球,记下数字为m,再从乙袋中摸出一个小球,记下数字为n. (1)请用列表或画树状图的方法表示出所有(m,n)可能的结果; (2)若m,n都是方程x2﹣5x+6=0的解时,则小明获胜;若m,n都不是方程x2﹣5x+6=0的解时,则小利获胜,问他们两人谁获胜的概率大? 【解答】解:(1)树状图如图所示: (2)∵m,n都是方程x2﹣5x+6=0的解, ∴m=2,n=3,或m=3,n=2, 由树状图得:共有12个等可能的结果,m,n都是方程x2﹣5x+6=0的解的结果有2个, m,n都不是方程x2﹣5x+6=0的解的结果有2个, 小明获胜的概率为212=16,小利获胜的概率为212=16, ∴小明、小利获胜的概率一样大. 四、解答题(二):本大题共5小题,共40分解答应写出必要的文字说明,证明过程或演算步骤 24.(7分)良好的饮食对学生的身体、智力发育和健康起到了极其重要的作用,荤菜中蛋白质、钙、磷及脂溶性维生素优于素食,而素食中不饱和脂肪酸、维生素和纤维素又优于荤食,只有荤食与素食适当搭配,才能强化初中生的身体素质.某校为了了解学生的体质健康状况,以便食堂为学生提供合理膳食,对本校七年级、八年级学生的体质健康状况进行了调查,过程如下: 收集数据: 从七、八年级两个年级中各抽取15名学生,进行了体质健康测试,测试成绩(百分制)如下: 七年级:74 81 75 76 70 75 75 79 81 70 74 80 91 69 82 八年级:81 94 83 77 83 80 81 70 81 73 78 82 80 70 50 整理数据: 年级 x<60 60≤x<80 80≤x<90 90≤x≤100 七年级 0 10 4 1 八年级 1 5 8 1 (说明:90分及以上为优秀,80~90分(不含90分)为良好,60~80分(不含80分)为及格,60分以下为不及格) 分析数据: 年级 平均数 中位数 众数 七年级 76.8 75 75 八年级 77.5 80 81 得出结论: (1)根据上述数据,将表格补充完整; (2)可以推断出 八 年级学生的体质健康状况更好一些,并说明理由; (3)若七年级共有300名学生,请估计七年级体质健康成绩优秀的学生人数. 【解答】解:(1)七年级的平均数为115(74+81+75+76+70+75+75+79+81+70+74+80+91+69+82)=76.8, 八年级的众数为81; 故答案为:76.8;81; (2)八年级学生的体质健康状况更好一些;理由如下: 八年级学生的平均数、中位数以及众数均高于七年级,说明八年级学生的体质健康情况更好一些; 故答案为:八; (3)若七年级共有300名学生,则七年级体质健康成绩优秀的学生人数=300×115=20(人). 25.(7分)如图,一次函数y=kx+b的图象与反比例函数y=mx的图象相交于A(﹣1,n)、B(2,﹣1)两点,与y轴相交于点C. (1)求一次函数与反比例函数的解析式; (2)若点D与点C关于x轴对称,求△ABD的面积; (3)若M(x1,y1)、N(x2,y2)是反比例函数y=mx上的两点,当x1<x2<0时,比较y2与y1的大小关系. 【解答】解:(1)∵反比例函数y=mx经过点B(2,﹣1), ∴m=﹣2, ∵点A(﹣1,n)在y=-2x上, ∴n=2, ∴A(﹣1,2), 把A,B坐标代入y=kx+b,则有-k+b=22k+b=-1, 解得k=-1b=1, ∴一次函数的解析式为y=﹣x+1,反比例函数的解析式为y=-2x. (2)∵直线y=﹣x+1交y轴于C, ∴C(0,1), ∵D,C关于x轴对称, ∴D(0,﹣1),∵B(2,﹣1) ∴BD∥x轴, ∴S△ABD=12×2×3=3. (3)∵M(x1,y1)、N(x2,y2)是反比例函数y=-2x上的两点,且x1<x2<0, ∴y1<y2. 26.(8分)如图,在正方形ABCD中,点E是BC的中点,连接DE,过点A作AG⊥ED交DE于点F,交CD于点G. (1)证明:△ADG≌△DCE; (2)连接BF,证明:AB=FB. 【解答】解:(1)∵四边形ABCD是正方形, ∴∠ADG=∠C=90°,AD=DC, 又∵AG⊥DE, ∴∠DAG+∠ADF=90°=∠CDE+∠ADF, ∴∠DAG=∠CDE, ∴△ADG≌△DCE(ASA); (2)如图所示,延长DE交AB的延长线于H, ∵E是BC的中点, ∴BE=CE, 又∵∠C=∠HBE=90°,∠DEC=∠HEB, ∴△DCE≌△HBE(ASA), ∴BH=DC=AB, 即B是AH的中点, 又∵∠AFH=90°, ∴Rt△AFH中,BF=12AH=AB. 27.(8分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E. (1)求证:∠A=∠ADE; (2)若AD=8,DE=5,求BC的长. 【解答】(1)证明:连接OD, ∵DE是切线, ∴∠ODE=90°, ∴∠ADE+∠BDO=90°, ∵∠ACB=90°, ∴∠A+∠B=90°, ∵OD=OB, ∴∠B=∠BDO, ∴∠ADE=∠A. (2)解:连接CD. ∵∠ADE=∠A, ∴AE=DE, ∵BC是⊙O的直径,∠ACB=90°, ∴EC是⊙O的切线, ∴ED=EC, ∴AE=EC, ∵DE=5, ∴AC=2DE=10, 在Rt△ADC中,DC=6, 设BD=x,在Rt△BDC中,BC2=x2+62,在Rt△ABC中,BC2=(x+8)2﹣102, ∴x2+62=(x+8)2﹣102, 解得x=92, ∴BC=62+(92)2=152. 28.(10分)如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C. (1)求二次函数的解析式; (2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标; (3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标. 【解答】解:(1)用交点式函数表达式得:y=(x﹣1)(x﹣3)=x2﹣4x+3; 故二次函数表达式为:y=x2﹣4x+3; (2)①当AB为平行四边形一条边时,如图1, 则AB=PE=2, 则点P坐标为(4,3), 当点P在对称轴左侧时,即点C的位置,点A、B、P、F为顶点的四边形为平行四边形, 故:点P(4,3)或(0,3); ②当AB是四边形的对角线时,如图2, AB中点坐标为(2,0) 设点P的横坐标为m,点F的横坐标为2,其中点坐标为:m+22, 即:m+22=2,解得:m=2, 故点P(2,﹣1); 故:点P(4,3)或(0,3)或(2,﹣1); (3)直线BC的表达式为:y=﹣x+3, 设点E坐标为(x,x2﹣4x+3),则点D(x,﹣x+3), S四边形AEBD=12AB(yD﹣yE)=﹣x+3﹣x2+4x﹣3=﹣x2+3x, ∵﹣1<0,故四边形AEBD面积有最大值, 当x=32,其最大值为94,此时点E(32,-34). 声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布 日期:2019/6/30 9:56:28;用户:中考培优辅导;邮箱:p5193@xyh.com;学号:27411521查看更多