- 2021-11-10 发布 |
- 37.5 KB |
- 20页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2018年四川省自贡市中考数学试卷含答案
2018年四川省自贡市中考数学试卷 一.选择题(共12个小题,每小题4分,共48分;在每题给出的四个选项中,只有一项是符合题目要求的) 1.(4分)计算﹣3+1的结果是( ) A.﹣2 B.﹣4 C.4 D.2 2.(4分)下列计算正确的是( ) A.(a﹣b)2=a2﹣b2 B.x+2y=3xy C. D.(﹣a3)2=﹣a6 3.(4分)2017年我市用于资助贫困学生的助学金总额是445800000元,将445800000用科学记数法表示为( ) A.44.58×107 B.4.458×108 C.4.458×109 D.0.4458×1010 4.(4分)在平面内,将一个直角三角板按如图所示摆放在一组平行线上;若∠1=55°,则∠2的度数是( ) A.50° B.45° C.40° D.35° 5.(4分)下面几何的主视图是( ) A. B. C. D. 6.(4分)如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC的面积为( ) 20 A.8 B.12 C.14 D.16 7.(4分)在一次数学测试后,随机抽取九年级(3)班5名学生的成绩(单位:分)如下:80、98、98、83、91,关于这组数据的说法错误的是( ) A.众数是98 B.平均数是90 C.中位数是91 D.方差是56 8.(4分)回顾初中阶段函数的学习过程,从函数解析式到函数图象,再利用函数图象研究函数的性质,这种研究方法主要体现的数学思想是( ) A.数形结合 B.类比 C.演绎 D.公理化 9.(4分)如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为( ) A. B. C. D. 10.(4分)从﹣1、2、3、﹣6这四个数中任取两数,分别记为m、n,那么点(m,n)在函数y=图象的概率是( ) A. B. C. D. 11.(4分)已知圆锥的侧面积是8πcm2,若圆锥底面半径为R(cm),母线长为l(cm),则R关于l的函数图象大致是( ) A. B. C. D. 12.(4分)如图,在边长为a正方形ABCD中,把边BC绕点B逆时针旋转60°,得到线段BM,连接AM并延长交CD于N,连接MC,则△MNC的面积为( ) 20 A. B. C. D. 二.填空题(共6个小题,每题4分,共24分) 13.(4分)分解因式:ax2+2axy+ay2= . 14.(4分)化简+结果是 . 15.(4分)若函数y=x2+2x﹣m的图象与x轴有且只有一个交点,则m的值为 . 16.(4分)六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为 、 个. 17.(4分)观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2018个图形共有 个○. 18.(4分)如图,在△ABC中,AC=BC=2,AB=1,将它沿AB翻折得到△ABD,则四边形ADBC的形状是 形,点P、E、F分别为线段AB、AD、DB的任意点,则PE+PF的最小值是 . 20 三、解答题(共8个题,共78分) 19.(8分)计算:|﹣|+()﹣1﹣2cos45°. 20.(8分)解不等式组:,并在数轴上表示其解集. 21.(8分)某校研究学生的课余爱好情况吧,采取抽样调查的方法,从阅读、运动、娱乐、上网等四个方面调查了若干名学生的兴趣爱好,并将调查结果绘制成下面两幅不完整的统计图,请你根据图中提供的信息解答下列问题: (1)在这次调查中,一共调查了 名学生; (2)补全条形统计图; (3)若该校共有1500名,估计爱好运动的学生有 人; (4)在全校同学中随机选取一名学生参加演讲比赛,用频率估计概率,则选出的恰好是爱好阅读的学生的概率是 . 22.(8分)如图,在△ABC中,BC=12,tanA=,∠ 20 B=30°;求AC和AB的长. 23.(10分)如图,在△ABC中,∠ACB=90°. (1)作出经过点B,圆心O在斜边AB上且与边AC相切于点E的⊙O(要求:用尺规作图,保留作图痕迹,不写作法和证明) (2)设(1)中所作的⊙O与边AB交于异于点B的另外一点D,若⊙O的直径为5,BC=4;求DE的长.(如果用尺规作图画不出图形,可画出草图完成(2)问) 24.(10分)阅读以下材料: 对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707﹣1783年)才发现指数与对数之间的联系. 对数的定义:一般地,若ax=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:x=logaN.比如指数式24=16可以转化为4=log216,对数式2=log525可以转化为52=25. 我们根据对数的定义可得到对数的一个性质:loga(M•N)=logaM+logaN(a>0,a≠1,M>0,N>0);理由如下: 设logaM=m,logaN=n,则M=am,N=an ∴M•N=am•an=am+n,由对数的定义得m+n=loga(M•N) 又∵m+n=logaM+logaN ∴loga(M•N)=logaM+logaN 解决以下问题: (1)将指数43=64转化为对数式 ; 20 (2)证明loga=logaM﹣logaN(a>0,a≠1,M>0,N>0) (3)拓展运用:计算log32+log36﹣log34= . 25.(12分)如图,已知∠AOB=60°,在∠AOB的平分线OM上有一点C,将一个120°角的顶点与点C重合,它的两条边分别与直线OA、OB相交于点D、E. (1)当∠DCE绕点C旋转到CD与OA垂直时(如图1),请猜想OE+OD与OC的数量关系,并说明理由; (2)当∠DCE绕点C旋转到CD与OA不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由; (3)当∠DCE绕点C旋转到CD与OA的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给于证明;若不成立,线段OD、OE与OC之间又有怎样的数量关系?请写出你的猜想,不需证明. 26.(14分)如图,抛物线y=ax2+bx﹣3过A(1,0)、B(﹣3,0),直线AD交抛物线于点D,点D的横坐标为﹣2,点P(m,n)是线段AD上的动点. (1)求直线AD及抛物线的解析式; (2)过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ的长度l与m的关系式,m为何值时,PQ最长? (3)在平面内是否存在整点(横、纵坐标都为整数)R,使得P、Q、D、R为顶点的四边形是平行四边形?若存在,直接写出点R的坐标;若不存在,说明理由. 20 20 2018年四川省自贡市中考数学试卷 参考答案与试题解析 一.选择题(共12个小题,每小题4分,共48分;在每题给出的四个选项中,只有一项是符合题目要求的) 1. 【解答】解:﹣3+1=﹣2; 故选:A. 2. 【解答】解:(A)原式=a2﹣2ab+b2,故A错误; (B)原式=x+2y,故B错误; (D)原式=a6,故D错误; 故选:C. 3. 【解答】解:445800000=4.458×108, 故选:B. 4. 【解答】解:由题意可得:∠1=∠3=55°, ∠2=∠4=90°﹣55°=35°. 故选:D. 20 5. 【解答】解:从几何体正面看,从左到右的正方形的个数为:2,1,2.故选B. 6. 【解答】解:∵在△ABC中,点D、E分别是AB、AC的中点, ∴DE∥BC,DE=BC, ∴△ADE∽△ABC, ∵=, ∴=, ∵△ADE的面积为4, ∴△ABC的面积为:16, 故选:D. 7. 【解答】解:98出现的次数最多, ∴这组数据的众数是98,A说法正确; =(80+98+98+83+91)=90,B说法正确; 这组数据的中位数是91,C说法正确; S2=[(80﹣90)2+(98﹣90)2+(98﹣90)2+(83﹣90)2+(91﹣90)2] =×278 =55.6,D说法错误; 故选:D. 8. 【解答】 20 解:学习了一次函数、二次函数和反比例函数,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现了数形结合的数学思想. 故选:A. 9. 【解答】解:延长BO交⊙O于D,连接CD, 则∠BCD=90°,∠D=∠A=60°, ∴∠CBD=30°, ∵BD=2R, ∴DC=R, ∴BC=R, 故选:D. 10. 【解答】解:∵点(m,n)在函数y=的图象上, ∴mn=6. 列表如下: m ﹣1 ﹣1 ﹣1 2 2 2 3 3 3 ﹣6 ﹣6 ﹣6 n 2 3 ﹣6 ﹣1 3 ﹣6 ﹣1 2 ﹣6 ﹣1 2 3 mn ﹣2 ﹣3 6 ﹣2 6 ﹣12 ﹣3 6 ﹣18 6 ﹣12 ﹣18 mn的值为6的概率是=. 故选:B. 11. 【解答】解:由题意得,lR=8π, 20 则R=, 故选:A. 12. 【解答】解:作MG⊥BC于G,MH⊥CD于H, 则BG=GC,AB∥MG∥CD, ∴AM=MN, ∵MH⊥CD,∠D=90°, ∴MH∥AD, ∴NH=HD, 由旋转变换的性质可知,△MBC是等边三角形, ∴MC=BC=a, 由题意得,∠MCD=30°, ∴MH=MC=a,CH=a, ∴DH=a﹣a, ∴CN=CH﹣NH=a﹣(a﹣a)=(﹣1)a, ∴△MNC的面积=××(﹣1)a=a2, 故选:C. 二.填空题(共6个小题,每题4分,共24分) 13. 【解答】解:原式=a(x2+2xy+y2)…(提取公因式) =a(x+y)2.…(完全平方公式) 20 14. 【解答】解:原式=+ = 故答案为: 15. 【解答】解:∵函数y=x2+2x﹣m的图象与x轴有且只有一个交点, ∴△=22﹣4×1×(﹣m)=0, 解得:m=﹣1. 故答案为:﹣1. 16. 【解答】解:设甲玩具购买x个,乙玩具购买y个,由题意,得 , 解得, 甲玩具购买10个,乙玩具购买20个, 故答案为:10,20. 17. 【解答】解: 观察图形可知: 第1个图形共有:1+1×3, 第2个图形共有:1+2×3, 第3个图形共有:1+3×3, …, 第n个图形共有:1+3n, 20 ∴第2018个图形共有1+3×2018=6055, 故答案为:6055. 18. 【解答】解:∵△ABC沿AB翻折得到△ABD, ∴AC=AD,BC=BD, ∵AC=BC, ∴AC=AD=BC=BD, ∴四边形ADBC是菱形, 故答案为菱; 如图 作出F关于AB的对称点M,再过M作ME⊥AD,交ABA于点P,此时PE+PF最小,此时PE+PF=ME, 过点A作AN⊥BC, ∵AD∥BC, ∴ME=AN, 作CH⊥AB, ∵AC=BC, ∴AH=, 由勾股定理可得,CH=, ∵, 20 可得,AN=, ∴ME=AN=, ∴PE+PF最小为, 故答案为. 三、解答题(共8个题,共78分) 19. 【解答】解:原式=+2﹣2× =+2﹣ =2. 故答案为2. 20. 【解答】解:解不等式①,得:x≤2; 解不等式②,得:x>1, ∴不等式组的解集为:1<x≤2. 将其表示在数轴上,如图所示. 21. 【解答】解:(1)爱好运动的人数为40,所占百分比为40% ∴共调查人数为:40÷40%=100 (2)爱好上网的人数所占百分比为10% ∴爱好上网人数为:100×10%=10, ∴爱好阅读人数为:100﹣40﹣20﹣10=30, 补全条形统计图,如图所示, 20 (3)爱好运动所占的百分比为40%, ∴估计爱好运用的学生人数为:1500×40%=600 (4)爱好阅读的学生人数所占的百分比40%, ∴用频率估计概率,则选出的恰好是爱好阅读的学生的概率为 故答案为:(1)100;(3)600;(4) 22. 【解答】解:如图作CH⊥AB于H. 在Rt△BCH中,∵BC=12,∠B=30°, ∴CH=BC=6,BH==6, 在Rt△ACH中,tanA==, ∴AH=8, ∴AC==10, ∴AB=AH+BH=8+6. 23. 【解答】解:(1)⊙O如图所示; 20 (2)作OH⊥BC于H. ∵AC是⊙O的切线, ∴OE⊥AC, ∴∠C=∠CEO=∠OHC=90°, ∴四边形ECHO是矩形, ∴OE=CH=,BH=BC﹣CH=, 在Rt△OBH中,OH==2, ∴EC=OH=2,BE==2, ∵∠EBC=∠EBD,∠BED=∠C=90°, ∴△BCE∽△BED, ∴=, ∴=, ∴DE=. 24. 【解答】解:(1)由题意可得,指数式43=64写成对数式为:3=log464, 故答案为:3=log464; (2)设logaM=m,logaN=n,则M=am,N=an, ∴==am﹣n,由对数的定义得m﹣n=loga, 又∵m﹣n=logaM﹣logaN, 20 ∴loga=logaM﹣logaN(a>0,a≠1,M>0,N>0); (3)log32+log36﹣log34, =log3(2×6÷4), =log33, =1, 故答案为:1. 25. 【解答】解:(1)∵OM是∠AOB的角平分线, ∴∠AOC=∠BOC=∠AOB=30°, ∵CD⊥OA, ∴∠ODC=90°, ∴∠OCD=60°, ∴∠OCE=∠DCE﹣∠OCD=60°, 在Rt△OCD中,OD=OE•cos30°=OC, 同理:OE=OC, ∴OD+OD=OC; (2)(1)中结论仍然成立,理由: 过点C作CF⊥OA于F,CG⊥OB于G, ∴∠OFC=∠OGC=90°, ∵∠AOB=60°, ∴∠FCG=120°, 同(1)的方法得,OF=OC,OG=OC, ∴OF+OG=OC, ∵CF⊥OA,CG⊥OB,且点C是∠AOB的平分线OM上一点, ∴CF=CG, 20 ∵∠DCE=120°,∠FCG=120°, ∴∠DCF=∠ECG, ∴△CFD≌△CGE, ∴DF=EG, ∴OF=OD+DF=OD+EG,OG=OE﹣EG, ∴OF+OG=OD+EG+OE﹣EG=OD+OE, ∴OD+OE=OC; (3)(1)中结论不成立,结论为:OE﹣OD=OC, 理由:过点C作CF⊥OA于F,CG⊥OB于G, ∴∠OFC=∠OGC=90°, ∵∠AOB=60°, ∴∠FCG=120°, 同(1)的方法得,OF=OC,OG=OC, ∴OF+OG=OC, ∵CF⊥OA,CG⊥OB,且点C是∠AOB的平分线OM上一点, ∴CF=CG,∵∠DCE=120°,∠FCG=120°, ∴∠DCF=∠ECG, ∴△CFD≌△CGE, ∴DF=EG, ∴OF=DF﹣OD=EG﹣OD,OG=OE﹣EG, ∴OF+OG=EG﹣OD+OE﹣EG=OE﹣OD, 20 ∴OE﹣OD=OC. 26. 【解答】解:(1)把(1,0),(﹣3,0)代入函数解析式,得 , 解得, 抛物线的解析式为y=x2+2x﹣3; 当x=﹣2时,y=(﹣2)2+2×(﹣2)﹣3,解得y=﹣3, 即D(﹣2,﹣3). 设AD的解析式为y=kx+b,将A(1,0),D(﹣2,﹣3)代入,得 , 解得, 直线AD的解析式为y=x﹣1; (2)设P点坐标为(m,m﹣1),Q(m,m2+2m﹣3), l=(m﹣1)﹣(m2+2m﹣3) 化简,得 l=﹣m2﹣m+2 配方,得 l=﹣(m+)2+, 当m=﹣时,l最大=; (3)DR∥PQ且DR=PQ时,PQDR是平行四边形, 由(2)得0<PQ≤, 又PQ是正整数, ∴PQ=1,或PQ=2. 20 当PQ=1时,DR=1,﹣3+1=﹣2,即R(﹣2,﹣2), ﹣3﹣1=﹣4,即R(﹣2,﹣4); 当PQ=2时,DR=2,﹣3+2=﹣1,即R(﹣2,﹣1), ﹣3﹣2=﹣5,即R(﹣2,﹣5), 综上所述:R点的坐标为(﹣2,﹣2),(﹣2,﹣4),(﹣2,﹣1)(﹣2,﹣5),使得P、Q、D、R为顶点的四边形是平行四边形. 20查看更多