2011年上海市中考数学试卷【答案+解析】

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2011年上海市中考数学试卷【答案+解析】

2011 年上海市中考数学试卷 一、选择题(本大题共 6 题,每题 4 分,共 24 分) 1.( 2011•上海)下列分数中,能化为有限小数的是( ) A. B. C. D. 2.( 2011•上海)如果 a>b,c<0,那么下列不等式成立的是( ) A.a+c>b+c B.c﹣a>c﹣b C.ac>bc D. 3.( 2011•上海)下列二次根式中,最简二次根式是( ) A. B. C. D. 4.( 2011•上海)抛物线 y=﹣(x+2)2﹣3 的顶点坐标是( ) A.( 2,﹣3) B.(﹣2,3) C.( 2,3) D.(﹣2,﹣3) 5.( 2011•上海)下列命题中,真命题是( ) A.周长相等的锐角三角形都全等 B.周长相等的直角三角形都全等 C.周长相等的钝角三角形都全等 D.周长相等的等腰直角三角形都全等 6.( 2011•上海)矩形 ABCD 中,AB=8, ,点 P 在边 AB 上,且 BP=3AP,如果圆 P 是以点 P 为圆心,PD 为半径的圆,那么下列判断正确的是( ) A.点 B、C 均在圆 P 外 B.点 B 在圆 P 外、点 C 在圆 P 内 C.点 B 在圆 P 内、点 C 在圆 P 外 D.点 B、 C 均在圆 P 内 二、填空题(本大题共 12 题,每题 4 分,共 48 分) 7.( 2011•上海)计算:a2•a3= _________ . 8.( 2011•上海)因式分解:x2﹣9y2= _________ . 9.( 2011•上海)如果关于 x 的方程 x2﹣2x+m=0(m 为常数)有两个相等实数根,那么 m= _________ . 10.( 2011•上海)函数 的定义域是 _________ . 11.( 2011•上海)如果反比例函数 (k 是常数,k≠0)的图象经过点(﹣1,2),那么这个函数的解析式是 _________ . 12.( 2011•上海)一次函数 y=3x﹣2 的函数值 y 随自变量 x 值的增大而 _________ (填“增大”或“减小”). 13.( 2011•上海)有 8 只型号相同的杯子,其中一等品 5 只,二等品 2 只和三等品 1 只,从中随机抽取 1 只杯子, 恰好是一等品的概率是 _________ . 14.( 2011•上海)某小区 2010 年屋顶绿化面积为 2000 平方米,计划 2012 年屋顶绿化面积要达到 2880 平方米.如 果每年屋顶绿化面积的增长率相同,那么这个增长率是 _________ . 15.( 2011•上海)如图,AM 是△ ABC 的中线,设向量 , ,那么向量 = _________ (结果用 、 表示). 16.( 2011•上海)如图,点 B、C、D 在同一条直线上,CE∥AB,∠ACB=90°,如果∠ECD=36°,那么∠A= _________ . 17.( 2011•上海)如图,AB、AC 都是圆 O 的弦,OM⊥AB,ON⊥AC,垂足分别为 M、N,如果 MN=3,那么 BC= _________ . 18.( 2011•上海)Rt△ABC 中,已知∠C=90°,∠B=50°,点 D 在边 BC 上,BD=2CD(如图).把△ABC 绕着点 D 逆 时针旋转 m(0<m<180)度后,如果点 B 恰好落在初始 Rt△ABC 的边上,那么 m= _________ . 三、解答题(本大题共 7 题,满分 78 分) 19.( 2011•上海)计算: . 20.( 2011•上海)解方程组: . 21.( 2011•上海)如图,点 C、D 分别在扇形 AOB 的半径 OA、OB 的延长线上,且 OA=3,AC=2,CD 平行于 AB, 并与弧 AB 相交于点 M、N. (1)求线段 OD 的长; (2)若 tan∠C= ,求弦 MN 的长. 22.( 2011•上海)据报载,在“百万家庭低碳行,垃圾分类要先行”活动中,某地区对随机抽取的 1000 名公民的年龄 段分布情况和对垃圾分类所持态度进行调查,并将调查结果分别绘成条形图(图 1)、扇形图(图 2). (1)图 2 中所缺少的百分数是 _________ ; (2)这次随机调查中,如果公民年龄的中位数是正整数,那么这个中位数所在年龄段是 _________ (填写年龄 段); (3)这次随机调查中,年龄段是“25 岁以下”的公民中“不赞成”的有 5 名,它占“25 岁以下”人数的百分数是 _________ ; (4)如果把所持态度中的“很赞同”和“赞同”统称为“支持”,那么这次被调查公民中“支持”的人有 _________ 名. 23.( 2011•上海)如图,在梯形 ABCD 中,AD∥BC,AB=DC,过点 D 作 DE⊥BC,垂足为 E,并延长 DE 至 F, 使 EF=DE.连接 BF、CD、AC. (1)求证:四边形 ABFC 是平行四边形; (2)如果 DE2=BE•CE,求证:四边形 ABFC 是矩形. 24.( 2011•上海)已知平面直角坐标系 xOy(如图),一次函数 的图象与 y 轴交于点 A,点 M 在正比例函 数 的图象上,且 MO=MA.二次函数 y=x2+bx+c 的图象经过点 A、M. (1)求线段 AM 的长; (2)求这个二次函数的解析式; (3)如果点 B 在 y 轴上,且位于点 A 下方,点 C 在上述二次函数的图象上,点 D 在一次函数 的图象上, 且四边形 ABCD 是菱形,求点 C 的坐标. 25.( 2011•上海)在 Rt△ ABC 中,∠ACB=90°,BC=30,AB=50.点 P 是 AB 边上任意一点,直线 PE⊥AB,与边 AC 或 BC 相交于 E.点 M 在线段 AP 上,点 N 在线段 BP 上,EM=EN, . (1)如图 1,当点 E 与点 C 重合时,求 CM 的长; (2)如图 2,当点 E 在边 AC 上时,点 E 不与点 A、C 重合,设 AP=x,BN=y,求 y 关于 x 的函数关系式,并写出 函数的定义域; (3)若△ AME∽△ENB(△ AME 的顶点 A、M、E 分别与△ ENB 的顶点 E、N、B 对应),求 AP 的长. 2011 年上海市中考数学试卷 参考答案与试题解析 一、选择题(本大题共 6 题,每题 4 分,共 24 分) 1.( 2011•上海)下列分数中,能化为有限小数的是( ) A. B. C. D. 考点:有理数的除法。 专题:计算题。 分析:本题需根据有理数的除法法则分别对每一项进行计算,即可求出结果. 解答:解:A∵ =0.3…故本选项错误; B、∵ =0.2 故本选项正确; C、 =0.142857…故本选项错误; D、 =0.1…故本选项错误. 故选 B. 点评:本题主要考查了有理数的除法,在解题时要根据有理数的除法法则分别计算是解题的关键. 2.( 2011•上海)如果 a>b,c<0,那么下列不等式成立的是( ) A.a+c>b+c B.c﹣a>c﹣b C.ac>bc D. 考点:不等式的性质。 专题:计算题。 分析:根据不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式 两边乘(或除以)同一个正数,不等号的方向不变. (3)不等式两边乘(或除以)同一个负数,不等号的方向改变.一个个筛选即可得到答案. 解答:解:A,∵a>b,∴a+c>b+c,故此选项正确; B,∵a>b, ∴﹣a<﹣b, ∴﹣a+c<﹣b+c, 故此选项错误; C,∵a>b,c<0, ∴ac<bc, 故此选项错误; D,∵a>b,c<0, ∴ < , 故此选项错误; 故选:A. 点评:此题主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存 在与否,以防掉进“0”的陷阱,准确把握不等式的性质是做题的关键. 3.( 2011•上海)下列二次根式中,最简二次根式是( ) A. B. C. D. 考点:最简二次根式。 专题:计算题。 分析:判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时 满足的就是最简二次根式,否则就不是. 解答:解:A、 = ,被开方数含分母,不是最简二次根式;故此选项错误 B、 = ,被开方数含分母,不是最简二次根式;故此选项错误 C、 ,是最简二次根式;故此选项正确; D. =5 ,被开方数,含能开得尽方的因数或因式,故此选项错误 故选 C. 点评:此题主要考查了最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被 开方数不含分母;(2)被开方数不含能开得尽方的因数或因式. 4.( 2011•上海)抛物线 y=﹣(x+2)2﹣3 的顶点坐标是( ) A.( 2,﹣3) B.(﹣2,3) C.( 2,3) D.(﹣2,﹣3) 考点:二次函数的性质。 专题:计算题。 分析:已知抛物线解析式为顶点式,根据顶点式的坐标特点求顶点坐标. 解答:解:∵抛物线 y=﹣(x+2)2﹣3 为抛物线解析式的顶点式, ∴抛物线顶点坐标是(﹣2,﹣3). 故选 D. 点评:本题考查了二次函数的性质.抛物线 y=a(x﹣h)2+k 的顶点坐标是(h,k). 5.( 2011•上海)下列命题中,真命题是( ) A.周长相等的锐角三角形都全等 B.周长相等的直角三角形都全等 C.周长相等的钝角三角形都全等 D.周长相等的等腰直角三角形都全等 考点:全等三角形的判定;命题与定理。 专题:证明题。 分析:全等三角形必须是对应角相等,对应边相等,根据全等三角形的判定方法,逐一检验. 解答:解:A、周长相等的锐角三角形的对应角不一定相等,对应边也不一定相等,假命题; B、周长相等的直角三角形对应锐角不一定相等,对应边也不一定相等,假命题; C、周长相等的钝角三角形对应钝角不一定相等,对应边也不一定相等,假命题; D、由于等腰直角三角形三边之比为 1:1: ,故周长相等时,等腰直角三角形的对应角相等,对应边相等,故 全等,真命题. 故选 D. 点评:本题考查了全等三角形的判定定理的运用,命题与定理的概念.关键是明确全等三角形的对应边相等,对应 角相等. 6.( 2011•上海)矩形 ABCD 中,AB=8, ,点 P 在边 AB 上,且 BP=3AP,如果圆 P 是以点 P 为圆心,PD 为半径的圆,那么下列判断正确的是( ) A.点 B、C 均在圆 P 外 B.点 B 在圆 P 外、点 C 在圆 P 内 C.点 B 在圆 P 内、点 C 在圆 P 外 D.点 B、 C 均在圆 P 内 考点:点与圆的位置关系。 专题:计算题;数形结合。 分析:根据 BP=3AP 和 AB 的长度求得 AP 的长,然后利用勾股定理求得圆 P 的半径 PD 的长,根据点 B、C 到 P 点的距离判断点 P 与圆的位置关系即可. 解答:解:∵AB=8,点 P 在边 AB 上,且 BP=3AP, ∴AP=2, ∴r=PD= =7, PC= = =9, ∵PB=6<r,PC=9>r ∴点 B 在圆 P 内、点 C 在圆 P 外 故选 C. 点评:本题考查了点与圆的位置关系的判定,根据点与圆心之间的距离和圆的半径的大小关系作出判断即可. 二、填空题(本大题共 12 题,每题 4 分,共 48 分) 7.( 2011•上海)计算:a2•a3= a5 . 考点:同底数幂的乘法。 分析:根据同底数的幂的乘法,底数不变,指数相加,计算即可. 解答:解:a2•a3=a2+3=a5. 点评:熟练掌握同底数的幂的乘法的运算法则是解题的关键. 8.( 2011•上海)因式分解:x2﹣9y2= (x+3y)( x﹣3y) . 考点:因式分解-运用公式法。 分析:直接利用平方差公式分解即可. 解答:解:x2﹣9y2=(x+3y)( x﹣3y). 点评:本题主要考查利用平方差公式分解因式,熟记公式结构是解题的关键. 9.( 2011•上海)如果关于 x 的方程 x2﹣2x+m=0(m 为常数)有两个相等实数根,那么 m= 1 . 考点:根的判别式。 专题:计算题。 分析:本题需先根据已知条件列出关于 m 的等式,即可求出 m 的值. 解答:解:∵x 的方程 x2﹣2x+m=0(m 为常数)有两个相等实数根 ∴△=b2﹣4ac=(﹣2)2﹣4×1•m=0 4﹣4m=0 m=1 故答案为:1 点评:本题主要考查了根的判别式,在解题时要注意对根的判别式进行灵活应用是本题的关键. 10.( 2011•上海)函数 的定义域是 x≤3 . 考点:函数自变量的取值范围。 专题:计算题。 分析:二次根式有意义,被开方数为非负数,即 3﹣x≥0,解不等式即可. 解答:解:依题意,得 3﹣x≥0, 解得 x≤3. 故答案为:x≤3. 点评:本题考查了函数的自变量取值范围的求法.关键是根据二次根式有意义时,被开方数为非负数建立不等式. 11.( 2011•上海)如果反比例函数 (k 是常数,k≠0)的图象经过点(﹣1,2),那么这个函数的解析式是 y= ﹣ . 考点:待定系数法求反比例函数解析式。 专题:待定系数法。 分析:根据图象过(﹣1,2)可知,此点满足关系式,能使关系时左右两边相等. 解答:解:把(﹣1,2)代入反比例函数关系式得:k=﹣2, ∴y=﹣ , 故答案为:y=﹣ , 点评:此题主要考查了用待定系数法求反比例函数的解析式,是中学阶段的重点. 12.( 2011•上海)一次函数 y=3x﹣2 的函数值 y 随自变量 x 值的增大而 增大 (填“增大”或“减小”). 考点:一次函数的性质。 专题:存在型。 分析:根据一次函数的性质判断出一次函数 y=3x﹣2 中 k 的符号,再根据一次函数的增减性进行解答即可. 解答:解:∵一次函数 y=3x﹣2 中,k=3>0, ∴函数值 y 随自变量 x 值的增大而增大. 故答案为:增大. 点评:本题考查的是一次函数的性质,即一次函数 y=kx+b(k≠0)中,k>0 时,y 随 x 的增大而增大. 13.( 2011•上海)有 8 只型号相同的杯子,其中一等品 5 只,二等品 2 只和三等品 1 只,从中随机抽取 1 只杯子, 恰好是一等品的概率是 . 考点:概率公式。 专题:应用题。 分析:共有八只型号相同的杯子,每只杯子被抽到的机会是相同的,故可用概率公式解答. 解答:解:在 8 只型号相同的杯子中, 一等品有 5 只, 则从中随机抽取 1 只杯子,恰好是一等品的概率是 P= . 故答案为 . 点评:此题考查概率的求法:如果一个事件有 n 种可能,而且这些事件的可能性相同,其中事件 A 出现 m 种结果, 那么事件 A 的概率 P(A)= . 14.( 2011•上海)某小区 2010 年屋顶绿化面积为 2000 平方米,计划 2012 年屋顶绿化面积要达到 2880 平方米.如 果每年屋顶绿化面积的增长率相同,那么这个增长率是 20% . 考点:一元二次方程的应用。 专题:增长率问题。 分析:本题需先设出这个增长率是 x,再根据已知条件找出等量关系列出方程,求出 x 的值,即可得出答案. 解答:解:设这个增长率是 x,根据题意得: 2000×(1+x)2=2880 解得:x1=20%,x2=﹣220%(舍去) 故答案为:20%. 点评:本题主要考查了一元二次方程的应用,在解题时要根据已知条件找出等量关系,列出方程是本题的关键. 15.( 2011•上海)如图,AM 是△ ABC 的中线,设向量 , ,那么向量 = + (结果用 、 表 示). 考点:*平面向量。 专题:数形结合。 分析:首先由 AM 是△ ABC 的中线,即可求得 的长,又由 = + ,即可求得答案. 解答:解:∵AM 是△ ABC 的中线, , ∴ = = , ∵ , ∴ = + = + . 故答案为: + . 点评:此题考查了平面向量的知识.题目难度不大,注意数形结合思想的应用. 16.( 2011•上海)如图,点 B、C、D 在同一条直线上,CE∥AB,∠ACB=90°,如果∠ECD=36°,那么∠A= 54° . 考点:平行线的性质;三角形内角和定理。 分析:由∠ACB=90°,∠ECD=36°,求得∠ACE 的度数,又由 CE∥AB,即可求得∠A 的度数. 解答:解:∵∠ECD=36°,∠ACB=90°, ∴∠ACD=90°, ∴∠ACE=∠ACD﹣∠ECD=90°﹣36°=54°, ∵CE∥AB, ∴∠A=∠ACE=54°. 故答案为:54°. 点评:此题考查了平行线的性质.解题的关键是注意数形结合思想的应用. 17.( 2011•上海)如图,AB、AC 都是圆 O 的弦,OM⊥AB,ON⊥AC,垂足分别为 M、N,如果 MN=3,那么 BC= 6 . 考点:三角形中位线定理;垂径定理。 分析:由 AB、AC 都是圆 O 的弦,OM⊥AB,ON⊥AC,根据垂径定理可知 M、N 为 AB、AC 的中点,线段 MN 为△ ABC 的中位线,根据中位线定理可知 BC=2MN. 解答:解:∵AB、AC 都是圆 O 的弦,OM⊥AB,ON⊥AC, ∴M、N 为 AB、AC 的中点,即线段 MN 为△ ABC 的中位线, ∴BC=2MN=6. 故答案为:6. 点评:本题考查了垂径定理,三角形的中位线定理的运用.关键是由垂径定理得出两个中点. 18.( 2011•上海)Rt△ ABC 中,已知∠C=90°,∠B=50°,点 D 在边 BC 上,BD=2CD(如图).把△ ABC 绕着点 D 逆时针旋转 m(0<m<180)度后,如果点 B 恰好落在初始 Rt△ ABC 的边上,那么 m= 80°或 120° . 考点:旋转的性质。 专题:计算题。 分析:本题可以图形的旋转问题转化为点 B 绕 D 点逆时针旋转的问题,故可以 D 点为圆心,DB 长为半径画弧,第 一次与原三角形交于斜边 AB 上的一点 B′,交直角边 AC 于 B″,此时 DB′=DB,DB″=DB=2CD,由等腰三角形的性 质求旋转角∠BDB′的度数,在 Rt△ B″CD 中,解直角三角形求∠CDB″,可得旋转角∠BDB″的度数. 解答:解:如图,在线段 AB 取一点 B′,使 DB=DB′,在线段 AC 取一点 B″,使 DB=DB″, ∴旋转角 m=∠BDB′=180°﹣∠DB′B﹣∠B=180°﹣2∠B=80°, 在 Rt△ B″CD 中,∵DB″=DB=2CD,∴∠CDB″=60°, 旋转角∠BDB″=180°﹣∠CDB″=120°. 故答案为:80°或 120°. 点评:本题考查了旋转的性质.关键是将图形的旋转转化为点的旋转,求旋转角. 三、解答题(本大题共 7 题,满分 78 分) 19.( 2011•上海)计算: . 考点:二次根式的混合运算;零指数幂。 专题:计算题。 分析:观察,可以首先去绝对值以及二次根式化简,再合并同类二次根式即可. 解答:解: =1﹣3 + ﹣1+ , =﹣3 + + ﹣ , =﹣2 . 点评:此题主要考查了二次根式的混合运算以及绝对值的性质,在进行此类运算时一般先把二次根式化为最简二次 根式的形式后再运算. 20.( 2011•上海)解方程组: . 考点:高次方程。 专题:方程思想。 分析:用代入法即可解答,把①化为 x=1+y,代入②得(1+y)2+2y+3=0 即可. 解答:解: 由①得 y=x﹣2③ 把③代入②,得 x2﹣2x(x﹣2)﹣3(x﹣2)2=0, 即 x2﹣4x+3=0 解这个方程,得 x1=3,x2=1 代入③中,得 或 . ∴原方程组的解为 或 . 点评:考查了高次方程,解答此类题目一般用代入法比较简单,先消去一个未知数再解关于另一个未知数的一元二 次方程,把求得结果代入一个较简单的方程中即可. 21.( 2011•上海)如图,点 C、D 分别在扇形 AOB 的半径 OA、OB 的延长线上,且 OA=3,AC=2,CD 平行于 AB, 并与弧 AB 相交于点 M、N. (1)求线段 OD 的长; (2)若 tan∠C= ,求弦 MN 的长. 考点:垂径定理;勾股定理;相似三角形的判定与性质;解直角三角形。 专题:几何综合题。 分析:(1)根据 CD∥AB 可知,△ OAB∽△OCD,再根据相似三角形的对应边成比例即可求出 OD 的长; (2)过 O 作 OE⊥CD,连接 OM,由垂径定理可知 ME= MN,再根据 tan∠C= 可求出 OE 的长,利用勾股定理 即可求出 ME 的长,进而求出答案. 解答:解:(1)∵CD∥AB,OA=3,AC=2, ∴△OAB∽△OCD, ∴ = ,即 = , ∴OD=5; (2)过 O 作 OE⊥CD,连接 OM,则 ME= MN, ∵tan∠C= , ∴设 OE=x,则 CE=2x, 在 Rt△ OEC 中,OC2=OE2+CE2,即 52=x2+(2x)2,解得 x= , 在 Rt△ OME 中,OM2=OE2+ME2,即 32=( )2+ME2,解得 ME=2. ∴MN=4, 故答案为:5;4. 点评:本题考查的是垂径定理,涉及到锐角三角函数的定义、相似三角形的判定与性质及勾股定理,根据题意作出 辅助线是解答此题的关键. 22.( 2011•上海)据报载,在“百万家庭低碳行,垃圾分类要先行”活动中,某地区对随机抽取的 1000 名公民的年龄 段分布情况和对垃圾分类所持态度进行调查,并将调查结果分别绘成条形图(图 1)、扇形图(图 2). (1)图 2 中所缺少的百分数是 12% ; (2)这次随机调查中,如果公民年龄的中位数是正整数,那么这个中位数所在年龄段是 36~45 (填写年龄段); (3)这次随机调查中,年龄段是“25 岁以下”的公民中“不赞成”的有 5 名,它占“25 岁以下”人数的百分数是 5% ; (4)如果把所持态度中的“很赞同”和“赞同”统称为“支持”,那么这次被调查公民中“支持”的人有 700 名. 考点:条形统计图;扇形统计图;中位数。 专题:图表型。 分析:(1)本题需先根据已知条件,再结合图形列出式子,解出结果即可. (2)本题需先根据中位数的概念即可得出答案. (3)本题需先求出 25 岁以下的总人数,再用 5 除以总人数即可得出答案. (4)本题需先求出这次被调查公民中支持的人所占的百分比,再乘以总人数即可得出答案. 解答:解:(1)图 2 中所缺少的百分数是:1﹣39%﹣18%﹣31%=12% (2)这个中位数所在年龄段是:36~45 (3) =5% (4)1000×(39%+31%)=700 故答案为:12%,36~45,5%,700 点评:本题主要考查了条形统计图和扇形统计图的有关知识,在解题时要注意综合利用这两种统计图是本题的关键. 23.( 2011•上海)如图,在梯形 ABCD 中,AD∥BC,AB=DC,过点 D 作 DE⊥BC,垂足为 E,并延长 DE 至 F, 使 EF=DE.连接 BF、CD、AC. (1)求证:四边形 ABFC 是平行四边形; (2)如果 DE2=BE•CE,求证:四边形 ABFC 是矩形. 考点:等腰梯形的性质;全等三角形的判定与性质;平行四边形的判定与性质;矩形的性质;相似三角形的判定与 性质。 专题:证明题。 分析:(1)连接 BD,利用等腰梯形的性质得到 AC=BD,再根据垂直平分线的性质得到 DB=FB,从而得到 AC=BF, 然后证得 AC∥BF,利用一组对边平行且相等判定平行四边形; (2)利用题目提供的等积式和两直角相等可以证得两直角三角形相似,得到对应角相等,从而得到直角来证明有 一个角是直角的平行四边形是矩形. 解答:证明:(1)连接 BD, ∵梯形 ABCD 中,AD∥BC,AB=DC, ∴AC=BD,∵BC=CB, ∴△ABC≌△DCB, ∴∠ACB=∠DBC ∵DE⊥BC,EF=DE, ∴BD=BF,∠DBC=∠FBC, ∴AC=BF,∠ACB=∠CBF ∴AC∥BF, ∴四边形 ABFC 是平行四边形; (2)∵DE2=BE•CE ∴ , ∵∠DEB=∠DEC=90°, ∴△BDE∽△DEC, ∴∠CDE=∠DBE, ∴∠BFC=∠BDC=∠BDE+∠CDE=∠BDE+∠DBE=90°, ∴四边形 ABFC 是矩形. 点评:本题考查了等腰梯形的性质、全等及相似三角形的判定及性质等,是一道集合了好几个知识点的综合题,但 题目的难度不算大. 24.( 2011•上海)已知平面直角坐标系 xOy(如图),一次函数 的图象与 y 轴交于点 A,点 M 在正比例函 数 的图象上,且 MO=MA.二次函数 y=x2+bx+c 的图象经过点 A、M. (1)求线段 AM 的长; (2)求这个二次函数的解析式; (3)如果点 B 在 y 轴上,且位于点 A 下方,点 C 在上述二次函数的图象上,点 D 在一次函数 的图象上, 且四边形 ABCD 是菱形,求点 C 的坐标. 考点:二次函数综合题。 专题:压轴题。 分析:(1)先求出根据 OA 垂直平分线上的解析式,再根据两点的距离公式求出线段 AM 的长; (2)二次函数 y=x2+bx+c 的图象经过点 A、M.待定系数法即可求出二次函数的解析式; (3)可设 D(n, n+3),根据菱形的性质得出 C(n,n2_ n+3)且点 C 在二次函数 y=x2_ x+3 上,得到方程求 解即可. 解答:解:(1)在一次函数 y= x+3 中, 当 x=0 时,y=3. ∴A(0,3). ∵MO=MA, ∴M 为 OA 垂直平分线上的点, 可求 OA 垂直平分线上的解析式为 y= , 又∵点 M 在正比例函数 , ∴M(1, ), 又∵A(0,3). ∴AM= ; (2)∵二次函数 y=x2+bx+c 的图象经过点 A、M.可得 , 解得 , ∴y=x2﹣ x+3; (3)∵点 D 在一次函数 的图象上, 则可设 D(n, n+3), 设 B(0,m),( m<3), C(n,n2﹣ n+3) ∵四边形 ABDC 是菱形, ∴|AB|=3﹣m,|DC|=yD﹣yC= n+3﹣(n2_ n+3)= n﹣n2, |AD|= = n, ∵|AB|=|DC|, ∴3﹣m= n﹣n2,①, ∵|AB|=|DA|, ∴3﹣m= n,② 解①②得,n1=0(舍去),n2=2, 将 n=2,代入 C(n,n2_ n+3) ∴C(2,2). 点评:本题是二次函数的综合题型,其中涉及的知识点有抛物线解析式的确定,两点的距离公式,菱形的性质,解 二元一次方程,综合性较强,难度较大. 25.( 2011•上海)在 Rt△ ABC 中,∠ACB=90°,BC=30,AB=50.点 P 是 AB 边上任意一点,直线 PE⊥AB,与边 AC 或 BC 相交于 E.点 M 在线段 AP 上,点 N 在线段 BP 上,EM=EN, . (1)如图 1,当点 E 与点 C 重合时,求 CM 的长; (2)如图 2,当点 E 在边 AC 上时,点 E 不与点 A、C 重合,设 AP=x,BN=y,求 y 关于 x 的函数关系式,并写出 函数的定义域; (3)若△ AME∽△ENB(△ AME 的顶点 A、M、E 分别与△ ENB 的顶点 E、N、B 对应),求 AP 的长. 考点:相似三角形的判定与性质;勾股定理;解直角三角形。 专题:几何综合题。 分析:(1)本题需先根据已知条件得出 AC 的值,再根据 CP⊥AB 求出 CP,从而得出 CM 的值. (2)本题需先根据 EN ,设出 EP 的值,从而得出 EM 和 PM 的值,再得出△ AEP∽△ABC,即可求 出 = ,求出 a 的值,即可得出 y 关于 x 的函数关系式,并且能求出函数的定义域. (3)本题需先设 EP 的值,得出则 EM 和 MP 的值,然后分①点 E 在 AC 上时,根据△ AEP∽△ABC,求出 AP 的 值,从而得出 AM 和 BN 的值,再根据△ AME∽△ENB,求出 a 的值,得出 AP 的长;②点 E 在 BC 上时,根据 △ EBP∽△ABCC,求出 AP 的值,从而得出 AM 和 BN 的值,再根据△ AME∽△ENB,求出 a 的值,得出 AP 的长. 解答:解:(1)∵∠ACB=90°, ∴AC= , = , =40, ∵CP⊥AB, ∴ = , ∴ = , ∴CP=24, ∴CM= , = , =26; (2)∵ , ∴设 EP=12a, 则 EM=13a,PM=5a, ∵EM=EN, ∴EN=13a,PN=5a, ∵△AEP∽△ABC, ∴ = , ∴ , ∴x=16a, ∴a= , ∴BP=50﹣16a, ∴y=50﹣21a, =50﹣21× , =50﹣ x, ∵当 E 点与 A 点重合时,x=0.当 E 点与 C 点重合时,x=32. ∴函数的定义域是:(0<x<32); (3)①当点 E 在 AC 上时,如图 2,设 EP=12a,则 EM=13a,MP=NP=5a, ∵△AEP∽△ABC, ∴ , ∴ , ∴AP=16a, ∴AM=11a, ∴BN=50﹣16a﹣5a=50﹣21a, ∵△AME∽△ENB, ∴ , ∴ = , ∴a= , ∴AP=16× =22, ②当点 E 在 BC 上时,如图(备用图),设 EP=12a,则 EM=13a,MP=NP=5a, ∵△EBP∽△ABC, ∴ = , 即 = , 解得 BP=9a, ∴BN=9a﹣5a=4a,AM=50﹣9a﹣5a=50﹣14a, ∵△AME∽△ENB, ∴ , 即 = , 解得 a= , ∴AP=50﹣9a=50﹣9× =42. 所以 AP 的长为:22 或 42. 点评:本题主要考查了相似三角形、勾股定理、解直角三角形的判定和性质,在解题时要注意知识的综合应是解本 题的关键. 参与本试卷答题和审题的老师有: lantin;nhx600;zhangCF;sd2011;gbl210;CJX;HJJ;sjzx;HLing;zhjh;zcx;ZJX。(排名不分先后) 菁优网 2012 年 5 月 27 日
查看更多

相关文章

您可能关注的文档