- 2021-11-06 发布 |
- 37.5 KB |
- 27页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2009中考数学分类汇编-动态问题
一、选择题 1.(2009年长春)如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度大小不变,则以点A为圆心,线段AP长为半径的圆的面积S与点P的运动时间t之间的函数图象大致为( ) O S t O S t O S t O S t A P B A. B. C. D. 2.(2009年江苏省)如图,在方格纸中,将图①中的三角形甲平移到图②中所示的位置,与三角形乙拼成一个矩形,那么,下面的平移方法中,正确的是( ) A.先向下平移3格,再向右平移1格 B.先向下平移2格,再向右平移1格 C.先向下平移2格,再向右平移2格 D.先向下平移3格,再向右平移2格 3.(2009年新疆)下列各组图中,图形甲变成图形乙,既能用平移,又能用旋转的是( ) 甲 乙 甲 乙 A. B. C. D. 甲 乙 甲 乙 4.(2009年天津市)在平面直角坐标系中,已知线段的两个端点分别是,将线段平移后得到线段,若点的坐标为,则点的坐标为( ) A. B. C. D. 5.(2009年牡丹江市)在如图所示的平面直角坐标系中,将向右平移3个单位长度后得再将绕点旋转后得到则下列说法正确的是( ) A.的坐标为 B. C. D. 4 3 2 1 0 3 2 1 x y A B C 6.(2009年莆田)如图1,在矩形中,动点从点出发,沿→→→方向运动至点处停止.设点运动的路程为,的面积为,如果关于的函数图象如图2所示,则当时,点应运动到( ) Q P R M N (图1) (图2) 4 9 y x O A.处 B.处 C.处 D.处 7.(2009年茂名市)如图,把抛物线与直线围成的图形绕原点顺时针旋转后,再沿轴向右平移1个单位得到图形则下列结论错误的是( ) A.点的坐标是 B.点的坐标是 C.四边形是矩形 D.若连接则梯形的面积是3 O y x B 8.(2009年湖北十堰市)如图,已知RtΔABC中,∠ACB=90°,AC= 4,BC=3,以AB边所在的直线为轴,将ΔABC旋转一周,则所得几何体的表面积是( ). A. B. C. D. 9.(2009 年佛山市)将两枚同样大小的硬币放在桌上,固定其中一枚,而另一枚则沿着其边缘滚动一周,这时滚动的硬币滚动了( ) A.1圈 B.1.5圈 C.2圈 D.2.5圈 二、填空题 10.(2009年新疆)如图,,半径为1cm的切于点,若将在上向右滚动,则当滚动到与也相切时,圆心移动的水平距离是__________cm. 11.(2009年包头)如图,已知与是两个全等的直角三角形,量得它们的斜边长为10cm,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点在同一条直线上,且点与点重合,将图(1)中的绕点顺时针方向旋转到图(2)的位置,点在边上,交于点,则线段的长为 cm(保留根号). A E C (F) D B 图(1) E A G B C (F) D 图(2) 12.(2009年达州)在边长为2㎝的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为____________㎝(结果不取近似值). 13.(2009年河南)如图,在Rt△ABC中,∠ACB=90°, ∠B =60°,BC=2.点0是AC的中点,过点0的直线l从与AC重合的位置开始,绕点0作逆时针旋转,交AB边于点D.过点C作CE∥AB交直线l于点E,设直线l的旋转角为α. (1)①当α=________度时,四边形EDBC是等腰梯形,此时AD的长为_________; ②当α=________度时,四边形EDBC是直角梯形,此时AD的长为_________; (2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由. 三、解答题 14. (2009年牡丹江市)已知中,为边的中点,绕点旋转,它的两边分别交、(或它们的延长线)于、当绕点旋转到于时(如图1),易证当绕点旋转到不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,、、又有怎样的数量关系?请写出你的猜想,不需证明. A E C F B D 图1 图3 A D F E C B A D B C E 图2 F 15.(2009年株洲市)已知为直角三角形,,,点、在轴上,点坐标为(,)(),线段与轴相交于点,以(1,0)为顶点的抛物线过点、. (1)求点的坐标(用表示); (2)求抛物线的解析式; (3)设点为抛物线上点至点之间的一动点,连结并延长交于点,连结 并延长交于点,试证明:为定值. 16. (2009年北京市)在中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转得到线段EF(如图1) (1)在图1中画图探究: ①当P为射线CD上任意一点(P1不与C重合)时,连结EP1绕点E逆时针旋转得到线段EC1.判断直线FC1与直线CD的位置关系,并加以证明; ②当P2为线段DC的延长线上任意一点时,连结EP2,将线段EP2绕点E 逆时针旋转得到线段EC2.判断直线C1C2与直线CD的位置关系,画出图形并直接写出你的结论. (2)若AD=6,tanB=,AE=1,在①的条件下,设CP1=,S=,求与之间的函数关系式,并写出自变量的取值范围. 17. (2009年北京市)如图,在平面直角坐标系中,三个机战的坐标分别为 ,,,延长AC到点D,使CD=,过点D作DE∥AB交BC的延长线于点E. (1)求D点的坐标; (2)作C点关于直线DE的对称点F,分别连结DF、EF,若过B点的直线将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式; (3)设G为y轴上一点,点P从直线与y轴的交点出发,先沿y轴到达G点,再沿GA到达A点,若P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短。(要求:简述确定G点位置的方法,但不要求证明) 18.(2009年崇左)在平面直角坐标系中,现将一块等腰直角三角板放在第二象限,斜靠在两坐标轴上,且点,点,如图所示:抛物线经过点. (1)求点的坐标; (2)求抛物线的解析式; (3)在抛物线上是否还存在点(点除外),使仍然是以为直角边的等腰直角三角形?若存在,求所有点的坐标;若不存在,请说明理由. B A C x y (0,2) (-1,0) 19.(2009年郴州市) 如图1,已知正比例函数和反比例函数的图像都经过点M(-2,),且P(,-2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B. (1)写出正比例函数和反比例函数的关系式; (2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由; (3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值. 图2 图1 20.(2009年常德市)如图1,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形. (1)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由; (2)当△ADE绕A点旋转到图3的位置时,△AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由. 图1 图2 图3 图8 21.(2009年桂林市、百色市)如图,已知直线,它与轴、轴的交点 分别为A、B两点. (1)求点A、点B的坐标; (2)设F是轴上一动点,用尺规作图作出⊙P,使⊙P经过点B且与轴相切于点F(不写作法和证明,保留作图痕迹); (3)设(2)中所作的⊙P的圆心坐标为P(),求与的函数关系式; (4)是否存在这样的⊙P,既与轴相切又与直线相切于点B,若存在,求出圆心P的坐标;若不存在,请说明理由. A BV F O · 22.(2009年黄冈市)如图,在平面直角坐标系xoy中,抛物线与x轴的交点为点A,与y轴的交点为点B. 过点B作x轴的平行线BC,交抛物线于点C,连结AC.现有两动点P,Q分别从A,C两点同时出发,点P以每秒4个单位的速度沿OA向终点A移动,点Q以每秒1个单位的速度沿CB向点B移动,点P停止运动时,点Q也同时停止运动,线段OC,PQ相交于点D,过点D作DE∥OA,交CA于点E,射线QE交x轴于点F.设动点P,Q移动的时间为t(单位:秒) (1)求A,B,C三点的坐标和抛物线的顶点的坐标; (2)当t为何值时,四边形PQCA为平行四边形?请写出计算过程; (3)当0<t<时,△PQF的面积是否总为定值?若是,求出此定值,若不是,请说明理由; (4)当t为何值时,△PQF为等腰三角形?请写出解答过程. 23.(2009年上海市)3已知∠ABC=90°,AB=2,BC=3,AD∥BC,P为线段BD上的动点,点Q在射线AB上,且满足(如图1所示). (1)当AD=2,且点与点重合时(如图2所示),求线段的长; (2)在图8中,联结.当,且点在线段上时,设点之间的距离为,,其中表示△APQ的面积,表示的面积,求关于的函数解析式,并写出函数定义域; (3)当,且点在线段的延长线上时(如图3所示),求的大小. A D P C B Q 图1 D A P C B (Q) ) 图2 图3 C A D P B Q 24.(2009重庆綦江)如图,已知抛物线经过点,抛物线的顶点为,过作射线.过顶点平行于轴的直线交射线于点,在轴正半轴上,连结. (1)求该抛物线的解析式; (2)若动点从点出发,以每秒1个长度单位的速度沿射线运动,设点运动的时间为.问当为何值时,四边形分别为平行四边形?直角梯形?等腰梯形? (3)若,动点和动点分别从点和点同时出发,分别以每秒1个长度单位和2个长度单位的速度沿和运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为,连接,当为何值时,四边形的面积最小?并求出最小值及此时的长. x y M C D P Q O A B 25.(2009年湖南长沙)如图,二次函数()的图象与轴交于两点,与轴相交于点.连结两点的坐标分别为、,且当和时二次函数的函数值相等. (1)求实数的值; (2)若点同时从点出发,均以每秒1个单位长度的速度分别沿边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为秒时,连结,将沿翻折,点恰好落在边上的处,求的值及点的坐标; (3)在(2)的条件下,二次函数图象的对称轴上是否存在点,使得以为项点的三角形与相似?如果存在,请求出点的坐标;如果不存在,请说明理由. y O x C N B P M A 26.(2009年内蒙古包头)如图,已知中,厘米,厘米,点为的中点. (1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动. ①若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由; ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与全等? (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇? A Q C D B P 27.(2009年绵阳市)如图,在平面直角坐标系中,矩形AOBC在第一象限内,E是边OB上的动点(不包括端点),作∠AEF = 90°,使EF交矩形的外角平分线BF于点F,设C(m,n). (1)若m = n时,如图,求证:EF = AE; (2)若m≠n时,如图,试问边OB上是否还存在点E,使得EF = AE?若存在,请求出点E的坐标;若不存在,请说明理由. (3)若m = tn(t>1)时,试探究点E在边OB的何处时,使得EF =(t + 1)AE成立?并求出点E的坐标. x O E B A y C F x O E B A y C F x O E B A y C F 28.(2009襄樊市)如图,在梯形中,点是的中点,是等边三角形. (1)求证:梯形是等腰梯形; (2)动点、分别在线段和上运动,且保持不变.设求与的函数关系式; (3)在(2)中:①当动点、运动到何处时,以点、和点、、、中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数; ②当取最小值时,判断的形状,并说明理由. A D C B P M Q 60° 29.(2009年淄博市)如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(),则AP=2xcm,CM=3xcm,DN=x2cm. (1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形; (2)当x 为何值时,以P,Q,M,N为顶点的四边形是平行四边形; (3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由. A B D C P Q M N 30.(2009年江苏省)如图,已知射线DE与轴和轴分别交于点和点.动点从点出发,以1个单位长度/秒的速度沿轴向左作匀速运动,与此同时,动点P从点D出发,也以1个单位长度/秒的速度沿射线DE的方向作匀速运动.设运动时间为秒. (1)请用含的代数式分别表示出点C与点P的坐标; (2)以点C为圆心、个单位长度为半径的与轴交于A、B两点(点A在点B的左侧),连接PA、PB. ①当与射线DE有公共点时,求的取值范围; ②当为等腰三角形时,求的值. 31.(2009年齐齐哈尔市)直线与坐标轴分别交于两点,动点同时从点出发,同时到达点,运动停止.点沿线段 运动,速度为每秒1个单位长度,点沿路线→→ 运动. (1)直接写出两点的坐标; (2)设点的运动时间为秒,的面积为,求出与之间的函数关系式; (3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标. x A O Q P B y 32.(2009年吉林省)如图所示,菱形的边长为6厘米,.从初始时刻开始,点、同时从点出发,点以1厘米/秒的速度沿的方向运动,点以2厘米/秒的速度沿的方向运动,当点运动到点时,、两点同时停止运动,设、运动的时间为秒时,与重叠部分的面积为平方厘米(这里规定:点和线段是面积为的三角形),解答下列问题: (1)点、从出发到相遇所用时间是 秒; (2)点、从开始运动到停止的过程中,当是等边三角形时的值是 秒; (3)求与之间的函数关系式. P Q A B C D 33.(2009年义乌)已知点A、B分别是轴、轴上的动点,点C、D是某个函数图像上的点,当四边形ABCD(A、B、C、D各点依次排列)为正方形时,称这个正方形为此函数图像的伴侣正方形。例如:如图,正方形ABCD是一次函数图像的其中一个伴侣正方形。 (1)若某函数是一次函数,求它的图像的所有伴侣正方形的边长; (2)若某函数是反比例函数,他的图像的伴侣正方形为ABCD,点D(2,m)(m <2)在反比例函数图像上,求m的值及反比例函数解析式; (3)若某函数是二次函数,它的图像的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4).写出伴侣正方形在抛物线上的另一个顶点坐标 ,写出符合题意的其中一条抛物线解析式 ,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数?(本小题只需直接写出答案) 34.如图, 直线与轴、轴分别交于点,点.点从点出发,以每秒1个单位长度的速度沿→方向运动,点从点出发,以每秒2个单位长度的速度沿→的方向运动.已知点同时出发,当点到达点时,两点同时停止运动, 设运动时间为秒. (1)设四边形MNPQ的面积为,求关于的函数关系式,并写出的取值范围. (2)当为何值时,与平行? l Qq O M N x y P 35.(2009年娄底)如图,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH∶AC=2∶3 (1)延长HF交AB于G,求△AHG的面积. (2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如右图). 探究1:在运动中,四边形CDH′H能否为正方形?若能, 请求出此时t的值;若不能,请说明理由. 探究2:在运动过程中,△ABC与直角梯形DEFH′重叠部分的面积为y,求y与t的函数关系. 36.(2009丽水市)已知直角坐标系中菱形ABCD的位置如图,C,D两点的坐标分别为(4,0),(0,3).现有两动点P,Q分别从A,C同时出发,点P沿线段AD向终点D运动,点Q沿折线CBA向终点A运动 ,设运动时间为t秒. (1)填空:菱形ABCD的边长是 、面积是 、 高BE的长是 ; (2)探究下列问题: ①若点P的速度为每秒1个单位,点Q的速度为每秒2个单位.当点Q在线段BA上时,求△APQ的面积S关于t的函数关系式,以及S的最大值; ②若点P的速度为每秒1个单位,点Q的速度变为每秒k个单位,在运动过程中,任何时刻都有相应的k值,使得△APQ沿它的一边翻折,翻折前后两个三角形组成的四边形为菱形.请探究当t=4秒时的情形,并求出k的值. 37.(2009年河南)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点. (1)直接写出点A的坐标,并求出抛物线的解析式; (2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD 向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E ①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长? ②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形? 请直接写出相应的t值. 38.(2009江西)如图1,在等腰梯形中,,是的中点,过点作交于点.,. (1)求点到的距离; (2)点为线段上的一个动点,过作交于点,过作交折线于点,连结,设. ①当点在线段上时(如图2),的形状是否发生改变?若不变,求出的周长;若改变,请说明理由; ②当点在线段上时(如图3),是否存在点,使为等腰三角形?若存在,请求出所有满足要求的的值;若不存在,请说明理由. A D E B F C 图4(备用) A D E B F C 图5(备用) A D E B F C 图1 图2 A D E B F C P N M 图3 A D E B F C P N M (第25题) 39.(2009年济宁市)在平面直角坐标中,边长为2的正方形的两顶点、分别在轴、轴的正半轴上,点在原点.现将正方形绕点顺时针旋转,当点第一次落在直线上时停止旋转,旋转过程中,边交直线于点,边交轴于点(如图). (1)求边在旋转过程中所扫过的面积; (2)旋转过程中,当和平行时,求正方形 旋转的度数; (3)设的周长为,在旋转正方形 的过程中,值是否有变化?请证明你的结论. O A B C M N O A B C M N 40.(2009年济宁市)如图,中,,,.半径为1的圆的圆心以1个单位/的速度由点沿方向在上移动,设移动时间为(单位:). (1)当为何值时,⊙与相切; (2)作交于点,如果⊙和线段交于点,证明:当时,四边形为平行四边形. · 图1 图2 41.(2009年衡阳市)如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60º. (1)求⊙O的直径; (2)若D是AB延长线上一点,连结CD,当BD长为多少时,CD与⊙O相切; (3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速度从B点出发沿BC方向运动,设运动时间为,连结EF,当为何值时,△BEF为直角三角形. 图(3) A B C O E F A B C O D 图(1) A B O E F C 图(2) 42.(2009年衡阳市)如图,直线与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于D. (1)当点M在AB上运动时,你认为四边形OCMD的周长是否发生变化?并说明理由; (2)当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少? (3)当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为,正方形OCMD与△AOB重叠部分的面积为S.试求S与的函数关系式并画出该函数的图象. B x y M C D O A 图(1) B x y O A 图(2) B x y O A 图(3) 43.(2009年包头)如图,已知中,厘米,厘米,点为的中点. (1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动. ①若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由; ②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与 全等? (2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇? A Q C D B P 44.(2009年包头)已知二次函数()的图象经过点,,,直线()与轴交于点. (1)求二次函数的解析式; (2)在直线()上有一点(点在第四象限),使得为顶点的三角形与以为顶点的三角形相似,求点坐标(用含的代数式表示); (3)在(2)成立的条件下,抛物线上是否存在一点,使得四边形为平行四边形?若存在,请求出的值及四边形的面积;若不存在,请说明理由. y x O 45.(2009年本溪)在中,,点是直线上一点(不与重合),以为一边在的右侧作,使,连接. (1)如图1,当点在线段上,如果,则 度; (2)设,. ①如图2,当点在线段上移动,则之间有怎样的数量关系?请说明理由; ②当点在直线上移动,则之间有怎样的数量关系?请直接写出你的结论. A E E A C C D D B B 图1 图2 A A 备用图 B C B C 备用图 46.(2009宁夏)如图1、图2,是一款家用的垃圾桶,踏板(与地面平行)或绕定点(固定在垃圾桶底部的某一位置)上下转动(转动过程中始终保持).通过向下踩踏点到(与地面接触点)使点上升到点,与此同时传动杆运动到的位置,点绕固定点 旋转(为旋转半径)至点,从而使桶盖打开一个张角. 如图3,桶盖打开后,传动杆所在的直线分别与水平直线垂直,垂足为点,设=.测得.要使桶盖张开的角度不小于,那么踏板离地面的高度至少等于多少?(结果保留两位有效数字) A P B D H H′ B′ A′ (图2) A P B D H H′ B′ A′ M C (图3) (参考数据:) (图1) 47.(2009宁夏)已知:等边三角形的边长为4厘米,长为1厘米的线段在的边上沿方向以1厘米/秒的速度向点运动(运动开始时,点与点重合,点到达点时运动终止),过点分别作边的垂线,与的其它边交于两点,线段运动的时间为秒. (1)线段在运动的过程中,为何值时,四边形恰为矩形?并求出该矩形的面积; (2)线段在运动的过程中,四边形的面积为,运动的时间为.求四边形的面积随运动时间变化的函数关系式,并写出自变量的取值范围. C P Q B A M N C P Q B A M N C P Q B A M N 48.(2009年湖州)如图,在平面直角坐标系中,直线∶=分别与轴,轴相交于两点,点是轴的负半轴上的一个动点,以为圆心,3为半径作. (1)连结,若,试判断与轴的位置关系,并说明理由; (2)当为何值时,以与直线的两个交点和圆心为顶点的三角形是正三角形? B A O x l y P A O x l y (备用图) 49.(2009年温州)如图,在平面直角坐标系中,点A(,0),B(3,2),(0,2).动点D以每秒1个单位的速度从点0出发沿OC向终点C运动,同时动点E以每秒2个单位的速度从点A出发沿AB向终点B运动.过点E作EF上AB,交BC于点F,连结DA、DF.设运动时间为t秒. (1)求∠ABC的度数; (2)当t为何值时,AB∥DF; (3)设四边形AEFD的面积为S.①求S关于t的函数关系式; ②若一抛物线y=x2+mx经过动点E,当S<2时,求m的取值范围(写出答案即可). 50.(2009年哈尔滨)如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H. (1)求直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值. O M B H A C x y 图(1) O M B H A C x y 图(2) O M B H A C x y 备用图 O M B H A C x y 备用图 51.(2009年中山)正方形边长为4,、分别是、上的两个动点,当点在上运动时,保持和垂直, (1)证明:; (2)设,梯形的面积为,求与之间的函数关系式;当点运动到什么位置时,四边形面积最大,并求出最大面积; (3)当点运动到什么位置时,求的值. 52.(2009年兰州)如图①,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4), 点C在第一象限.动点P在正方形 ABCD的边上,从点A出发沿A→B→C→D匀速运动, 同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动, 设运动的时间为t秒. (1)当P点在边AB上运动时,点Q的横坐标(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度; (2)求正方形边长及顶点C的坐标; (3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标; (4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由. 53.(2009年济南)如图,在梯形中,动点从点出发沿线段以每秒2个单位长度的速度向终点运动;动点同时从点出发沿线段以每秒1个单位长度的速度向终点运动.设运动的时间为秒. (1)求的长. (2)当时,求的值. (3)试探究:为何值时,为等腰三角形. A D C B M N 54.(2009年河北)如图,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0). (1)当t = 2时,AP = ,点Q到AC的距离是 ; (2)在点P从C向A运动的过程中,求△APQ的面积S与 t的函数关系式;(不必写出t的取值范围) (3)在点E从B向C运动的过程中,四边形QBED能否成 为直角梯形?若能,求t的值.若不能,请说明理由; (4)当DE经过点C 时,请直接写出t的值. A C B P Q E D 55.(09湖北宜昌)已知:如图1,把矩形纸片ABCD折叠,使得顶点A与边DC上的动点P重合(P不与点D,C重合), MN为折痕,点M,N分别在边BC, AD上,连接AP,MP,AM, AP与MN相交于点F.⊙O过点M,C,P. (1)请你在图1中作出⊙O(不写作法,保留作图痕迹); (2)与 是否相等?请你说明理由; (3)随着点P的运动,若⊙O与AM相切于点M时,⊙O又与AD相切于点H. 设AB为4,请你通过计算,画出这时的图形.(图2,3供参考) 图1 图2 图3 56.(09湖北宜昌)已知:直角梯形OABC的四个顶点是O(0,0),A(,1), B(s,t),C(,0),抛物线y=x2+mx-m的顶点P是直角梯形OABC内部或边上的一个动点,m为常数. (1)求s与t的值,并在直角坐标系中画出直角梯形OABC; (2)当抛物线y=x2+mx-m与直角梯形OABC的边AB相交时,求m的取值范围. 57.(09湖南邵阳)如图,直线的解析式为,它与轴、轴分别相交于两点.平行于直线的直线从原点出发,沿轴的正方形以每秒1个单位长度的速度运动,它与轴、轴分别相交于两点,设运动时间为秒(). (1)求两点的坐标; (2)用含的代数式表示的面积; (3)以为对角线作矩形,记和重合部分的面积为, ①当时,试探究与之间的函数关系式; ②在直线的运动过程中,当为何值时,为面积的? O M A P N y l m x B O M A P N y l m x B E P F 58.(09湖南怀化)如图,在直角梯形OABC中, OA∥CB,A、B两点的坐标分别为A(15,0),B (10,12),动点P、Q分别从O、B两点出发,点P以每秒2个单位的速度沿OA向终点A运动,点Q以每秒1个单位的速度沿BC向C运动,当点P停止运动时,点Q也同时停止运动.线段OB、PQ相交于点D,过点D作DE∥OA,交AB于点E,射线QE交轴于点F.设动点P、Q运动时间为t(单位:秒). (1)当t为何值时,四边形PABQ是等腰梯形,请写出推理过程; (2)当t=2秒时,求梯形OFBC的面积; (3)当t为何值时,△PQF是等腰三角形?请写出推理过程. 59.(2009年湖北十堰市)如图①, 已知抛物线(a≠0)与轴交于点A(1,0)和点B (-3,0),与y轴交于点C. (1) 求抛物线的解析式; (2) 设抛物线的对称轴与轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由. (3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标. 60.(2009年山东青岛市)如图,在梯形ABCD中,,,,,点由B出发沿BD方向匀速运动,速度为1cm/s;同时,线段EF由DC出发沿DA方向匀速运动,速度为1cm/s,交于Q,连接PE.若设运动时间为(s)().解答下列问题: (1)当为何值时,? (2)设的面积为(cm2),求与之间的函数关系式; (3)是否存在某一时刻,使?若存在,求出此时的值;若不存在,说明理由. (4)连接,在上述运动过程中,五边形的面积是否发生变化?说明理由. A E D Q P B F C 61.(2009年新疆乌鲁木齐市)如图,在矩形中,已知、两点的坐标分别为,为的中点.设点是平分线上的一个动点(不与点重合). (1)试证明:无论点运动到何处,总与相等; (2)当点运动到与点的距离最小时,试确定过三点的抛物线的解析式; (3)设点是(2)中所确定抛物线的顶点,当点运动到何处时,的周长最小?求出此时点的坐标和的周长; (4)设点是矩形的对称中心,是否存在点,使?若存在,请直接写出点的坐标. y O x P D B 62.(2009年山西省)在中,将绕点顺时针旋转角得交于点,分别交于两点. (1)如图1,观察并猜想,在旋转过程中,线段与有怎样的数量关系?并证明你的结论; (2)如图2,当时,试判断四边形的形状,并说明理由; (3)在(2)的情况下,求的长. A D B E C F A D B E C F 63.(2009年山西省)如图,已知直线与直线相交于点分别交轴于两点.矩形的顶点分别在直线上,顶点都在轴上,且点与点重合. (1)求的面积; (2)求矩形的边与的长; (3)若矩形从原点出发,沿轴的反方向以每秒1个单位长度的速度平移,设移动时间为秒,矩形与重叠部分的面积为,求关于的函数关系式,并写出相应的的取值范围. A D B E O C F x y y (G) 64.(2009年黄石市)如图,中,点是边上一个动点,过作直线,设交的平分线于点,交的外角平分线于点. (1)探究:线段与的数量关系并加以证明; (2)当点在边上运动时,四边形会是菱形吗?若是,请证明,若不是,则说明理由; (3)当点运动到何处,且满足什么条件时,四边形是正方形? A F N D C B M E O 65.(2009年黄石市)正方形在如图所示的平面直角坐标系中,在轴正半轴上,在轴的负半轴上,交轴正半轴于交轴负半轴于,,抛物线过三点. (1)求抛物线的解析式; (2)是抛物线上间的一点,过点作平行于轴的直线交边于,交所在直线于,若,则判断四边形的形状; (3)在射线上是否存在动点,在射线上是否存在动点,使得且,若存在,请给予严格证明,若不存在,请说明理由. O y x B E A D C F 66.(2009年云南省)已知在平面直角坐标系中,四边形OABC是矩形,点A、C的坐标分别为、,点D的坐标为,点P是直线AC上的一动点,直线DP与轴交于点M.问: (1)当点P运动到何位置时,直线DP平分矩形OABC的面积,请简要说明理由,并求出此时直线DP的函数解析式; (2)当点P沿直线AC移动时,是否存在使与相似的点M,若存在,请求出点M的坐标;若不存在,请说明理由; (3)当点P沿直线AC移动时,以点P为圆心、半径长为R(R>0)画圆,所得到的圆称为动圆P.若设动圆P的直径长为AC,过点D作动圆P的两条切线,切点分别为点E、F.请探求是否存在四边形DEPF的最小面积S,若存在,请求出S的值;若不存在,请说明理由. 注:第(3)问请用备用图解答. 备用图 67.(2009东营)已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG. (1)求证:EG=CG; (2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由. (3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明) F B A D C E G 图① F B A D C E G 图② D F B A C E 图③ 68.(2009眉山)如图,已知直线与轴交于点A,与轴交于点D,抛物线与直线交于A、E两点,与轴交于B、C两点,且B点坐标为 (1,0)。 ⑴求该抛物线的解析式; ⑵动点P在轴上移动,当△PAE是直角三角形时,求点P的坐标P。 ⑶在抛物线的对称轴上找一点M,使的值最大,求出点M的坐标。 查看更多