- 2022-03-31 发布 |
- 37.5 KB |
- 19页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
七年级上数学课件第二章 小结与复习_人教新课标
小结与复习第二章整式的加减 要点梳理一、整式的有关概念1.单项式:都是数或字母的____,这样的式子叫做单项式,单独的一个数或一个字母也是单项式.2.单项式的系数:单项式中的数字因数叫做这个单项式的系数.3.单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数.4.多项式:几个单项式的____叫做多项式.5.多项式的次数:多项式里次数最高项的次数,叫做这个多项式的次数.6.整式:______________________统称整式.积和单项式与多项式 二、同类项、合并同类项1.同类项:所含字母________,并且相同字母的指数也______的项叫做同类项.几个常数项也是同类项.2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项,即把它们的系数相加作为新的系数,而字母部分不变.[注意](1)同类项不考虑字母的排列顺序,如-7xy与yx是同类项;(2)只有同类项才能合并,如x2+x3不能合并.相同相同 三、整式的加减一般地,几个整式相加减,如果有括号就先________,然后再_____________.去括号合并同类项 考点一整式的有关概念A√√√ C针对训练3√√√ 考点二同类项例2若3xm+5y2与x3yn的和是单项式,求mn的值.【解析】根据同类项的定义,可知x的指数和y的指数分别相等. 针对训练3、若5x2y与xmyn是同类项,则m=(),n=()若5x2y与xmyn的和是单项式,则m=(),n=()2121只有同类项才能合并成一项 考点三去括号例3已知A=x3+2y3-xy2,B=-y3+x3+2xy2,求:(1)A+B;(2)2B-2A.【解析】把A,B所指的式子分别代入计算.解:(1)A+B=(x3+2y3-xy2)+(-y3+x3+2xy2)=x3+2y3-xy2-y3+x3+2xy2=2x3+y3+xy2.(2)2B-2A=2(-y3+x3+2xy2)-2(x3+2y3-xy2)=-2y3+2x3+4xy2-2x3-4y3+2xy2=6xy2-6y3. 针对训练4.下列各项中,去括号正确的是()A.x2-(2x-y+2)=x2-2x+y+2B.-(m+n)-mn=-m+n-mnC.x-(5x-3y)+(2x-y)=-2x+2yD.ab-(-ab+3)=3C 例4若A是一个三次多项式,B是一个四次多项式,则A+B一定是()A.三次多项式B.四次多项式或单项式C.七次多项式D.四次七项式【解析】A+B的最高次项一定是四次项,至于是否含有其它低次项不得而知,所以A+B只可能是四次多项式或单项式.故选B.B你能举出对应的例子吗? 针对训练5.若A是一个四次多项式,B是一个二次多项式,则A-B()A.可能是六次多项式B.可能是二次多项式C.一定是四次多项式或单项式D.可能是0C 考点四整式的加减运算与求值【解析】如果把x的值直接代入,分别求出A,B,C的值,然后再求3A+2B-36C的值显然很麻烦,不如先把原式化简,再把x值代入计算. 6.已知式子x2+3x+5的值为7,那么式子3x2+9x-2的值是()A.0B.2C.4D.6针对训练【解析】已知x2+3x+5=7,目前没办法解出x.可以考虑把x2+3x当做一个整体,于是可得x2+3x=2.因此3x2+9x-2=3(x2+3x)-2=3×2-2=6-2=4.故选A.A运用整体思想 考点五与整式的加减有关的探索性问题例6甲对乙说:“有一个游戏,规则是:任意想一个数,把这个数乘以2,结果加上8,再除以2,最后减去所想的数,此时我就知道结果”请你说说甲为什么会知道结果.【解析】从化简入手进而揭开它神秘的面纱.解:设所想的数为n,则(2n+8)÷2-n=n+4-n=4.因为结果是常数4,所以与所想的数无关,因此甲能知道结果. 针对训练7.学习了有理数的运算后,小明设计了一种计算程序,如图所示,当小明输入-6时,则输出值y=________.36查看更多