【生物】2020届一轮复习人教版基因的自由组合定律B学案

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【生物】2020届一轮复习人教版基因的自由组合定律B学案

‎2020届 一轮复习 人教版 基因的自由组合定律B 学案 ‎ ‎ 考法一 9∶3∶3∶1的解题模型 AaBb × AaBb 显显    显隐    隐显    隐隐 ‎9A_B_ ∶ 3A_bb ∶ 3aaB_ ∶ 1aabb ‎1AABB   1AAbb   1aaBB   1aabb ‎2AABb   2Aabb    2aaBb      ‎ ‎2AaBB                 ‎ ‎4AaBb                 ‎ 以上模型的前提是两对等位基因,且独立遗传。通过以上模型,我们可以发现一些规律,熟记这些规律能极大地提升解题速度。下面将规律归纳如下:‎ 规律一:比例为1的均为纯合子、比例为2的均为单杂合子、比例为4的为双杂合子。‎ 规律二:含一对隐性基因的单杂合子有2种,含一对显性基因的单杂合子也有2种。‎ 规律三:9A_B_包含4种基因型,比例为1∶2∶2∶4,3A_bb包含2种基因型,比例为1∶2;3aaB_也包含2种基因型,比例也为1∶2。‎ 规律四:9A_B_中杂合子占8/9 ,纯合子占1/9;3A_bb(3aaB_)中杂合子占2/3 ,纯合子占1/3。‎ ‎【典题示导】‎ ‎1.大鼠的毛色由独立遗传的两对等位基因控制。用黄色大鼠与黑色大鼠进行杂交实验,结果如图5-15-12。据图判断,下列叙述正确的是 (  )‎ 图5-15-12‎ A.黄色为显性性状,黑色为隐性性状 B.F1 与黄色亲本杂交,后代有两种表现型 C.F1 和F2 中灰色大鼠均为杂合体 D.F2 黑色大鼠与米色大鼠杂交,其后代中出现米色大鼠的概率为1/4‎ ‎2.[2018·陕西师大附中二模] 将纯合的野鼠色小鼠与棕色小鼠杂交,F1全部表现为野鼠色。F1个体间相互交配,F2表现型及比例为野鼠色∶黄色∶黑色∶棕色=9∶3∶3∶1。若M、N为控制相关代谢途径的显性基因,据此推测最合理的代谢途径是 (  )‎ A       B  ‎ C       D  ‎ 图5-15-13‎ 考法二 关于9∶3∶3∶1的变化 ‎  (一)致死现象 ‎  致死现象的常见情况有三种:①若有一对显性基因纯合致死,例如AA致死,Aa与Aa的子代表现型比例为2∶1,Bb与Bb的子代表现型比例为3∶1,则9∶3∶3∶1的变化为6∶2∶3∶1。②若两对显性基因纯合都致死,例如AA致死、BB也致死,Aa与Aa的子代表现型比例为2∶1,Bb与Bb的子代表现型比例为2∶1, 则9∶3∶3∶1的变化为4∶2∶2∶1。③若有一对隐性基因纯合致死,例如aa致死,Aa与Aa的子代表现型全为显性,Bb与Bb的子代表现型比例为3∶1,则9∶3∶3∶1的变化为3∶1。④配子致死:指致死基因在配子时期发生作用,从而不能形成有活力的配子的现象。可分为含某种基因的雄配子致死和雌配子致死。‎ ‎【典题示导】‎ ‎3.基因型为AaBb的个体自交,下列有关子代(数量足够多)的各种性状分离比情况,分析有误的是 (  )‎ A.若子代出现6∶2∶3∶1的性状分离比,则存在AA或BB纯合致死现象 B.若子代出现4∶2∶2∶1的性状分离比,则具有A或B基因的个体表现为显性性状 C.若子代出现3∶1的性状分离比,则存在aa或bb纯合致死现象 D.若子代出现9∶7的性状分离比,则存在3种杂合子自交会出现性状分离现象 ‎4.[2018·惠州一模] 某二倍体植物有高茎与矮茎、红花与白花两对相对性状,且均各只受一对等位基因控制。现有一高茎红花亲本,其自交后代表现型及比例为高茎红花∶高茎白花∶矮茎红花∶矮茎白花=5∶3∶3∶1,下列分析错误的是 (  )‎ A.控制上述两对相对性状的基因遗传时遵循自由组合定律 B.出现5∶3∶3∶1的原因可能是存在某种基因型植株(合子)致死现象 C.出现5∶3∶3∶1的原因可能是存在某种基因组成配子致死现象 D.自交后代中高茎红花均为杂合子 ‎  (二)累加效应 ‎  若显性基因作用效果相同,且存在累加效应,则AaBb自交子代中含0个显性基因的基因型为1aabb, 含1个显性基因的基因型为2Aabb、 2aaBb,含2个显性基因的基因型为1AAbb、1aaBB、4AaBb,含3个显性基因的基因型为2AABb、2AaBB,含4个显性基因的基因型为1AABB,因此9∶3∶3∶1变化为1∶4∶6∶4∶1。‎ ‎【典题示导】‎ ‎5.一个7米高和一个5米高的植株杂交,子代都是6米高。在F2中,7米高植株和5米高植株的概率都是1/64。假定双亲包含的遗传基因数量相等,且效应叠加,则控制植株株高的基因有 (  )‎ ‎                  ‎ A.1对 B.2对 C.3对 D.4对 ‎6.控制植物果实重量的三对等位基因A/a、B/b和C/c,对果实重量的作用相等,分别位于三对同源染色体上。已知基因型为aabbcc的果实重120克,基因型为AABBCC的果实重210克。现有果树甲和乙杂交,甲的基因型为AAbbcc,F1的果实重135~165克。则乙的基因型是 (  )‎ A.aaBBcc B.AaBBcc C.AaBbCc D.aaBbCc ‎  (三)基因互作 ‎  基因互作是指非等位基因之间通过相互作用影响同一性状表现的现象。‎ 异常的表现 型分离比 相当于孟德尔的表现 型分离比合并 子代表现 型种类 ‎12∶3∶1‎ ‎ (9A_B_+3A_bb)∶3aaB_∶1aabb或(9A_B_+3aaB_)∶3A_bb∶1aabb ‎3种 ‎9∶6∶1‎ ‎ 9A_B_∶(3A_bb+3aaB_)∶1aabb ‎3种 ‎(续表)‎ 异常的表现 型分离比 相当于孟德尔的表现 型分离比合并 子代表现 型种类 ‎9∶3∶4‎ ‎ 9A_B_∶3A_bb∶‎ ‎3种 ‎(3aaB_+1aabb)或9A_B_∶3aaB_∶(3A_bb+1aabb)‎ ‎13∶3‎ ‎ (9A_B_+3A_bb+1aabb)∶3aaB_或(9A_B_+3aaB_+1aabb)∶3A_bb ‎2种 ‎15∶1‎ ‎ (9A_B_+3A_bb+3aaB_)∶1aabb ‎2种 ‎9∶7‎ ‎ 9A_B_∶(3A_bb+3aaB_+1aabb)‎ ‎2种 ‎  可以看出,基因互作导致的各种表现型的比例都是从9∶3∶3∶1的基础上演变而来的,只是表现型比例有所改变(根据题意进行合并或分解),而基因型的比例仍然和独立分配是一致的,由此可见,虽然这种表现型比例不同,但同样遵循基因的自由组合定律。‎ ‎【典题示导】‎ ‎7.某种小鼠的体色受常染色体基因的控制,现用一对纯合灰鼠杂交,F1都是黑鼠,F1中的雌、雄个体相互交配,F2体色表现为9黑∶6灰∶1白。下列叙述正确的是 (  )‎ A.小鼠体色遗传遵循基因的自由组合定律 ‎ B.若F1与白鼠杂交,后代表现为2黑∶1灰∶1白 ‎ C.F2灰鼠中能稳定遗传的个体占1/2‎ D.F2黑鼠有两种基因型 ‎8.小鼠毛皮中黑色素的形成是一个复杂的过程,当显性基因R、C(两对等位基因位于两对常染色体上)都存在时,才能产生黑色素,如图5-15-14所示。现将黑色纯种和白色纯种小鼠进行杂交,F1雌雄交配,则F2的表现型比例为 (  )‎ 图5-15-14‎ A.黑色∶白色=2∶1‎ B.黑色∶棕色∶白色=1∶2∶1‎ C.黑色∶棕色∶白色=9∶6∶1‎ D.黑色∶棕色∶白色=9∶3∶4‎ 题后归纳 性状分离比9∶3∶3∶1变式的解题步骤 图5-15-15‎ ‎  (四)根据9∶3∶3∶1的变化,类比推理测交后代1∶1∶1∶1的变化 ‎  测交  AaBb  ×   aabb ‎          ↓‎ ‎    1AaBb∶1Aabb∶1aaBb∶1aabb ‎  若A_B_、aaB_、A_bb表现型相同,则自交后代9∶3∶3∶1变化为15∶1,那么测交后代1∶1∶1∶1变化为3∶1。若A_bb、aaB_表现型相同,则自交后代9∶3∶3∶1变化为9∶6∶1,那么测交后代1∶1∶1∶1变化为1∶2∶1,其他情况以此类推。‎ ‎【典题示导】‎ ‎9.等位基因A、a和B、b分别位于不同对的同源染色体上。让显性纯合子(AABB)和隐性纯合子(aabb)杂交得F1,再让F1测交,测交后代的表现型比例为1∶3。如果让F1自交,则下列表现型比例中,F2不可能出现的是 (  )‎ A.13∶3 B.9∶4∶3 C.9∶7 D.15∶1‎ 考法三 多对基因控制一种性状的问题分析 ‎(1)问题分析 两对或多对等位基因控制一种性状的问题分析,往往要依托教材中两对相对性状的遗传实验。该类遗传现象仍属于基因的自由组合问题,后代基因型的种类和自由组合问题一样,但表现型的问题和孟德尔的豌豆杂交实验大有不同,性状分离比也有很大区别。‎ ‎(2)解题技巧 关键是弄清表现型和基因型的对应关系,根据这一对应关系结合一对相对性状和两对相对性状的经典实验综合分析。‎ ‎①先用常规方法推断出子代的基因型种类或某种基因型的比例。‎ ‎②再进一步推断出子代表现型的种类或某种表现型的比例。‎ ‎【典题示导】‎ ‎10.某植物红花和白花为一对相对性状,同时受多对等位基因控制(如A、a,B、b,C、c……),当个体的基因型中每对等位基因都至少含有一个显性基因时(即A_B_C_……)才开红花,否则开白花。现有甲、乙、丙、丁4个纯合白花品系,相互之间进行杂交,杂交组合、后代表现型及其比例如下表所示,下列分析错误的是 (  )‎ 组一 组二 组三 组四 组五 组六 P 甲×乙 乙×丙 乙×丁 甲×丙 甲×丁 丙×丁 F1‎ 白色 红色 红色 白色 红色 白色 F2‎ 白色 红色81∶‎ 白色175‎ 红色27∶‎ 白色37‎ 白色 红色81∶‎ 白色175‎ 白色 A.组二F1基因型可能是AaBbCcDd ‎ B.组五F1基因型可能是AaBbCcDdEE ‎ C.组二和组五的F1基因型可能相同 D.这一对相对性状最多受四对等位基因控制,且遵循自由组合定律 真题·预测 ‎1.[2017·全国卷Ⅱ] 若某哺乳动物毛色由3对位于常染色体上的、独立分配的等位基因决定,其中,A基因编码的酶可使黄色素转化为褐色素;B基因编码的酶可使该褐色素转化为黑色素;D基因的表达产物能完全抑制A基因的表达;相应的隐性等位基因a、b、d的表达产物没有上述功能。若用两个纯合黄色品种的动物作为亲本进行杂交,F1均为黄色,F2中毛色表现型出现了黄∶褐∶黑=52∶3∶9的数量比,则杂交亲本的组合是 (  )‎ A.AABBDD×aaBBdd,或AAbbDD×aabbdd B.aaBBDD×aabbdd,或AAbbDD×aaBBDD C.aabbDD×aabbdd,或AAbbDD×aabbdd D.AAbbDD×aaBBdd,或AABBDD×aabbdd ‎2.[2016·全国卷Ⅲ] 用某种高等植物的纯合红花植株与纯合白花植株进行杂交,F1全部表现为红花。若F1自交,得到的F2植株中,红花为272株,白花为212株;若用纯合白花植株的花粉给F1红花植株授粉,得到的子代植株中,红花为101株,白花为302株。根据上述杂交实验结果推断,下列叙述正确的是 (  )‎ A.F2中白花植株都是纯合体 B.F2中红花植株的基因型有2种 C.控制红花与白花的基因在一对同源染色体上 D.F2中白花植株的基因型种类比红花植株的多 ‎3.[2015·福建卷] 鳟鱼的眼球颜色和体表颜色分别由两对等位基因A、a和B、b控制。现以红眼黄体鳟鱼和黑眼黑体鳟鱼为亲本,进行杂交实验,正交和反交结果相同。实验结果如图5-15-16所示。请回答:‎ P   红眼黄体×黑眼黑体 F1     黑眼黄体 F2黑眼黄体 红眼黄体 黑眼黑体 ‎   9  ∶  3  ∶  4‎ 图5-15-16‎ ‎(1)在鳟鱼体表颜色性状中,显性性状是    。亲本中的红眼黄体鳟鱼的基因型是    。 ‎ ‎(2)已知这两对等位基因的遗传符合自由组合定律,理论上F2还应该出现    性状的个体,但实际并未出现,推测其原因可能是基因型为    的个体本应该表现出该性状,却表现出黑眼黑体的性状。 ‎ ‎(3)为验证(2)中的推测,用亲本中的红眼黄体个体分别与F2中黑眼黑体个体杂交,统计每一个杂交组合的后代性状及比例。只要其中有一个杂交组合的后代       ,则该推测成立。 ‎ ‎1.科学家在培养果蝇时得到了黏胶眼和展翅两种品系。果蝇黏胶眼基因(G)和展翅(D)均为Ⅲ号染色体上的显性基因,G或D纯合时有致死效应。以下方法中最适合长期保留这两种果蝇品系的是 (  )‎ A.分别寻找黏胶眼的纯合品系和展翅的纯合品系并独立繁殖保留 B.分别寻找黏胶眼的杂合品系和展翅的杂合品系并独立繁殖保留 C.选择既非黏胶眼又非展翅的隐性纯合品系,与黏胶眼杂合品系和展翅杂合品系分别杂交并保留 D.寻找既为黏胶眼又为展翅且两个显性基因不在同一条Ⅲ号染色体上的品系相互杂交并保留 ‎2.某自花传粉且闭花受粉植物(2n)的高茎对矮茎为显性,受一对等位基因控制;紫花对白花为显性,受两对独立遗传的等位基因控制。某小组为探究该植物控制茎高度的基因与控制花色的基因之间是否独立遗传,将纯合高茎紫花植株与纯合矮茎白花植株进行杂交,所得的F1全为高茎紫花植株,F1自交所得F2中高茎紫花∶矮茎紫花∶高茎白花∶矮茎白花=45∶15∶3∶1。请回答下列问题:‎ ‎(1)将纯合高茎紫花植株与纯合矮茎白花植株进行杂交,请补充完整该杂交实验的操作流程:雌株去雄→        →套袋。(用文字和箭头的形式表述) ‎ ‎(2)综合上述杂交实验及结果分析,该植物控制茎高度的基因与控制花色的基因之间是否独立遗传,并说明理由:‎ ‎ ‎ ‎ ‎ ‎ 。 ‎ ‎(3)理论上,F2中的高茎紫花植株共有    种基因型。 ‎ ‎(4)矮茎紫花植株既抗倒伏又具有更高的观赏价值,欲从F2的矮茎紫花植株中获得能稳定遗传的个体,请写出最简单的实验操作过程(只答实验步骤)。‎ 拓展微课 数学方法在遗传规律解题中的运用 ‎ 难点一 拆分法 分解是数学中应用较为普遍的方法。位于非同源染色体上的非等位基因的分离或组合是互不干扰的,也就是说一对等位基因与另一对等位基因的分离和组合是互不干扰、各自独立的。因此,解决较为复杂的关于自由组合定律的问题时,可借鉴分解法。‎ ‎1.概率的分解 将题干中所给的概率拆分为两个或多个概率,再运用分离定律单独分析,逆向思维,快速解决此类问题。‎ 例1 在香豌豆中,当C、R两个显性基因都存在时,花才呈红色。一株红花香豌豆与基因型为ccRr的植株杂交,子代中有3/8开红花。则该红花香豌豆的基因型为 。 ‎ ‎ 2.比例的分解 将题干中所给的比例拆分为两个或多个特殊比例,再运用分离定律单独分析,逆向思维,快速解决此类问题。有时,一些拆分后的比例运用自由组合定律分析更简单,因此不要拘泥于分离定律。‎ 例2 一种哺乳动物的直毛(B)对卷毛(b)为显性,黑色(C)对白色(c)为显性(这两对基因分别位于不同对的同源染色体上)。基因型为BbCc的个体与“个体X”交配,子代表现型有直毛黑色、卷毛黑色、直毛白色和卷毛白色,并且它们之间的比例为3∶3∶1∶1,“个体X”的基因型为 (  )‎ ‎                  ‎ A.BbCc B.Bbcc C.bbCc D.bbcc 难点二 合并同类项法 合并同类项实际上就是乘法分配律的逆向运用。例如两对等位基因间的基因互作,依据题意进行合并同类项,在9∶3∶3∶1的基础上,基因型为AaBb的个体自交,其子代表现型比例可以变化为15∶1、9∶7、9∶6∶1等等。合并同类项法在巧推自由组合规律特殊比值中是一种好方法。‎ 例3 在西葫芦的皮色遗传中,已知黄皮基因(Y)对绿皮基因(y)为显性,但在另一白色显性基因(W)存在时,基因Y和y都不能表达。现有基因型为WwYy的个体自交,其后代表现型种类及比例是 (  )‎ A.2种,13∶3 B.3种,12∶3∶1 ‎ C.3种,10∶3∶3 D.4种,9∶3∶3∶1‎ 难点三 通项公式法 先根据题设条件和遗传学原理进行简单的推导,从中归纳出通项公式,然后依据通项公式来解决问题。‎ ‎1.n对等位基因的个体(独立遗传)自交公式 含n对等位基因(各自独立遗传)的亲本自交,则配子的种类和F1表现型的种类为2n种,基因型种类为3n种,纯合子种类为2n种 , 杂合子种类为(3n-2n)种。‎ 例4 水稻杂交育种特点是将两个纯合亲本的优良性状通过杂交集中在一起,再经过选择和培育获得新品种。假设杂交涉及4对相对性状,每对相对性状各受一对等位基因控制,彼此间各自独立遗传。在完全显性的情况下,从理论上讲,F2表现型共有    种,其中纯合基因型共有    种,杂合基因型共有    种。  ‎ ‎ 2.杂合子(Aa)连续自交公式 Aa连续自交n次,后代情况为杂合子占(1/2)n, 纯合子占1-(1/2)n,AA或aa占1/2×[1-(1/2)n],显性∶隐性=(2n+1)∶(2n-1)。‎ 例5 已知小麦抗病对感病为显性,无芒对有芒为显性,两对性状独立遗传。用纯合的抗病无芒与感病有芒杂交,F1自交,播种所有的F2,假定所有F2植株都能成活,在F2植株开花前,拔掉所有的有芒植株,并对剩余植株套袋。假定剩余的每株F2收获的种子数量相等,且F3的表现型符合遗传定律。理论上,F3中表现感病植株的比例为 (  )‎ A.1/8 B.3/8 C.1/16 D.3/16‎ ‎ 3.雌雄配子组合公式 如果亲代雄性个体含n对等位基因,雌性个体含m对等位基因,各对基因独立遗传,则亲代雄性个体产生2n种配子,雌性个体产生2m种配子,受精时,雌雄配子组合数为2n与2m的乘积。‎ 例6 西葫芦果皮的颜色由两对等位基因(W与w、Y与y)控制,两对基因独立遗传。果皮的颜色有3种,白色为W_Y_、W_yy,黄色为wwY_,绿色为wwyy 。进行如下杂交实验:‎ P白果皮×黄果皮F1白果皮∶黄果皮∶绿果皮=4∶3∶1‎ 求亲本的基因型。‎ ‎ ‎ 难点四 二项式定理法 一般地,对于任意正整数n, 都有(a+b)n=anb0+an-1b+…+an-rbr+…+a0bn,这个公式叫作二项式定理。‎ 例7 基因为AaBbDdEeGgHhKk的个体自交,假定这7对等位基因自由组合,则下列有关其子代的叙述,正确的是 (  )‎ A.1对等位基因杂合、6对等位基因纯合的个体出现的概率为5/64‎ B.3对等位基因杂合、4对等位基因纯合的个体出现的概率为35/128‎ C.5对等位基因杂合、2对等位基因纯合的个体出现的概率为67/256‎ D.7对等位基因纯合的个体出现的概率与7对等位基因杂合的个体出现的概率不同 难点五 利用(3/4)n、(1/4)n推导 依据n对等位基因自由组合且为完全显性时,F2中每对等位基因都至少含有一个显性基因的个体所占比例是(3/4)n,隐性纯合子所占比例是(1/4)n ,类比,快速推理基因型。‎ 例8 某植物红花和白花这对相对性状同时受多对等位基因控制(如A、a,B、b,C、c,D、d),各对等位基因独立遗传,当个体的基因型中每对等位基因都至少含有一个显性基因时(即A_B_……)才开红花,否则开白花。进行如下杂交实验:‎ P红花×白花F1红花F2红花∶白花=81∶175‎ 求亲本的基因型和子一代的基因型。‎ ‎ ‎ ‎ 。 ‎ 难点六 利用数据先判断,再推导基因型 这种推导方法中,利用数据不是为了单纯的计算,而是通过数据进行判断,找出突破口,以达到巧推亲代基因型的目的。‎ 例9 玉米是雌雄同株二倍体植物,其籽粒的颜色与细胞中的色素有关,现有一种彩色玉米,控制其色素合成的三对等位基因分别位于三对同源染色体上,基因组成A_C_D_为紫色,A_C_dd和A_ccD_为古铜色,其他基因组成为白色。‎ 现有两株古铜色玉米杂交,F1全部为紫色,F2中紫色占63/128,这两株古铜色玉米的基因型为                 。 ‎ ‎ 1.[2018·黑龙江大庆铁人中学模拟] 小麦籽粒色泽由4对独立遗传的基因(A和a、B和b、C和c、D和d)所控制,只要有一个显性基因存在就表现红色,只有全隐性才为白色。现有杂交实验:红粒×红粒→63红粒∶1白粒,则其双亲基因型不可能是 (  )‎ A.AabbCcDd×AabbCcDd B.AaBbCcDd×AaBbccdd C.AaBbCcDd×aaBbCcdd D.AaBbccdd×aaBbCcDd ‎2.已知某植株的高产与低产这对相对性状受一对等位基因控制,生物兴趣小组的同学用300对亲本均分为2组进行了下表所示的实验。下列分析错误的是 (  )‎ 组别 杂交方案 杂交结果 甲组 高产×低产 高产∶低产=7∶1‎ 乙组 低产×低产 全为低产 A.高产为显性性状,低产为隐性性状 B.控制高产和低产的基因的碱基排列顺序不同 C.甲组高产亲本中杂合个体的比例是1/3‎ D.甲组中高产亲本个体自交产生的低产子代个体的比例为1/16‎ ‎3.高茎(T)腋生花(A)的豌豆与高茎(T)顶生花(a)的豌豆杂交(两对等位基因分别位于两对同源染色体上),F1的表现型及比例为高茎腋生花∶高茎顶生花∶矮茎腋生花∶矮茎顶生花=3∶3∶1∶1。下列说法正确的是 (  )‎ ‎①亲代基因型为TtAa×Ttaa ②高茎与腋生花互为相对性状 ③F1中两对基因均为纯合子的概率为1/4 ④F1中两对性状均为隐性的概率为1/8 ⑤F1中高茎腋生花的基因型可能为TTAA A.①②③ B.②③⑤‎ C.①③④ D.③④⑤‎ 自由组合定律的遗传特例完全解读 ‎【典题示导】‎ ‎1.B [解析] 根据题意可假设灰色为A_B_,黄色为A_bb,黑色为aaB_,米色为aabb,所以灰色为双显性状,米色为双隐性状,黄色、黑色为单显性状,A 错误;F1 为双杂合子(AaBb),与黄色亲本(按假设为AAbb)杂交,后代有两种表现型,B 正确;F2 出现性状分离,灰色大鼠中有1/9 的为纯合子(AABB),其余为杂合子,C 错误;F2 的黑色大鼠中纯合子(aaBB)所占比例为1/3,与米色(aabb)杂交不会产生米色大鼠,杂合子(aaBb)所占比例为2/3,与米色大鼠(aabb)交配,产生米色大鼠的概率为2/3×1/2=1/3,D 错误。‎ ‎2.A [解析] 纯合的野鼠色小鼠与棕色小鼠杂交,F1全部表现为野鼠色。F1个体间相互交配,F2表现型及比例为野鼠色∶黄色∶黑色∶棕色=9∶3∶3∶1,可知野鼠色是双显性基因控制的,棕色是隐性基因控制的,黄色、黑色分别是单显基因控制的,所以推测最合理的代谢途径如A项所示。‎ ‎3.B [解析] 基因型为AaBb的个体自交,正常情况下符合自由组合定律,子代性状分离比为9∶3∶3∶1,或理解为(3∶1)(3∶1)。若子代出现6∶2∶3∶1的性状分离比,即(2∶1)(3∶1),其中有一对基因显性纯合致死,可能为AA,也可能为BB,故A正确。若子代出现4∶2∶2∶1的性状分离比,即(2∶1)(2∶1),可推知,两对显性基因均纯合致死,故B错误。若子代出现3∶1的性状分离比,即(3∶1)(3∶0),可推知,有一对隐性基因纯合致死,aa或bb,故C正确。若子代出现9∶7的性状分离比,即9∶(3+3+1),可推知,子代只有A与B同时存在时表现为一种性状,否则为另一种性状,所以关于两对性状的杂合子中:AABb、AaBB、AaBb自交会出现性状分离,而其他杂合子aaBb、Aabb 自交不会发生性状分离,故D正确。‎ ‎4.B [解析] 设高茎与矮茎、红花与白花分别受一对等位基因A和a、B和b控制。一高茎红花亲本自交后代出现4种类型,则该亲本的基因型为AaBb,又因自交后代的性状分离比为5∶3∶3∶1,说明控制这两对相对性状的两对等位基因位于两对同源染色体上,其遗传遵循基因的自由组合定律,A正确;理论上该高茎红花亲本自交后代性状分离比为9∶3∶3∶1,而实际上却为5∶3∶3∶1,若将5∶3∶3∶1拆开来分析,则有高茎∶矮茎=2∶1,红花∶白花=2∶1,说明在后代中不存在AA和BB个体,进而推知出现5∶3∶3∶1的原因可能是基因组成为AB的雌配子或雄配子致死,B错误,C正确;综上分析可推知,在自交后代中,高茎红花的基因型为AABb、AaBB、AaBb,均为杂合子,D正确。‎ ‎5.C [解析] 此题宜使用代入法解答。当控制植株株高的基因为3对时,AABBCC株高为7米,aabbcc株高为5米,AaBbCc株高为6米,AaBbCc自交后代中AABBCC和aabbcc的概率都是1/64,C正确。‎ ‎6.D [解析] 根据题中信息可知每增加1个显性基因,果实重量增加15克。甲产生的配子为Abc,F1的果实重135克时表示含1个显性基因,则乙产生的配子中存在不含显性基因的情况,即abc,排除A、B项;F1的果实重165克时表示含3个显性基因,则乙产生的配子中最多含2个显性基因,又排除C项,故答案为D。‎ ‎7.A [解析] 根据题意分析可知,F2中小鼠的体色及比例为黑∶灰∶白=9∶6∶1,是“9∶3∶3∶1”的变式,这说明小鼠的体色受两对等位基因的控制(相应的基因用A和a、B和b表示),且这两对等位基因的遗传遵循基因的自由组合定律。黑色鼠的基因型为A_B_,灰色鼠的基因型为A_bb和aaB_,白色鼠的基因型为aabb,A正确;若F1黑鼠AaBb与白鼠aabb杂交,后代基因型为AaBb、Aabb、aaBb、aabb,所以表现型为1黑∶2灰∶1白,B错误;F2灰鼠的基因型有AAbb、Aabb、aaBB、aaBb,比例为1∶2∶1∶2,所以,能稳定遗传的个体占1/3,C错误;F2黑鼠有四种基因型,分别是AABB、AABb、AaBB、AaBb,D错误。‎ ‎8.D [解析] 由题干可知,黑色基因型为C_R_,棕色基因型为C_rr,白色基因型为ccR_和ccrr,将黑色纯种(CCRR)和白色纯种(ccrr或ccRR)小鼠进行杂交得到F1,当白色纯种为ccrr时,F1的基因型为CcRr,F1雌、雄个体交配,则F2的表现型及比例为黑色(9C_R_)∶棕色(3C_rr)∶白色(3ccR_和1ccrr)=9∶3∶4。当白色纯种为ccRR时,F1的基因型为CcRR,F1雌、雄个体交配,则F2的表现型及比例为黑(C_RR)∶白(ccRR)=3∶1,综合分析,D正确。‎ ‎9.B [解析] 位于不同对同源染色体上说明遵循基因的自由组合定律,F1(AaBb)测交,按照正常的自由组合定律表现型比例为1∶1∶1∶1,而现在是1∶3,那么F1自交后原本的9∶3∶3∶1有可能是9∶7、13∶3或15∶1,故A、C、D正确。‎ ‎10.D [解析] 根据题意可知,植物红花和白花的相对性状同时受多对等位基因控制时,组二和组五的F1至少含四对等位基因,当该对性状受四对等位基因控制时,组二和组五的F1的基因型都可为AaBbCcDd,当该对性状受五对等位基因控制时组五F1基因型可能是AaBbCcDdEE,A、B、C正确;组二和组五的F1自交,F2的分离比为红色∶白色=81∶175,即红花占81/(81+175)=(3/4)4‎ ‎,则可推测这对相对性状至少受四对等位基因控制,且四对基因分别位于四对同源染色体上,遵循自由组合定律,D错误。‎ ‎【五年真题】‎ ‎1.D [解析] 由F2中毛色表现型出现了黄∶褐∶黑=52∶3∶9的数量比,可知F2中A_B_dd占9/64,A_bbdd占3/64,由此推知F1有A、a、B、b基因,再由F1均为黄色推知F1存在D、d基因,因此杂交亲本的组合是AAbbDD×aaBBdd,或AABBDD×aabbdd,D项正确。‎ ‎2.D [解析] 本题考查基因的自由组合定律及其应用。纯合红花植株与纯合白花植株进行杂交,F1全部表现为红花,说明红花为显性,用纯合白花植株的花粉给F1红花植株授粉,即红花测交,后代中红花∶白花约为1∶3,说明红花和白花这对相对性状由两对互不影响的等位基因(假设分别用A、a和B、b表示)控制,且只有双显性个体才表现为红花。F1的基因型为AaBb,F2中红花植株的基因型有4种,即AABB、AaBB、AABb、AaBb,F2中白花植株的基因型有5种,即aaBB、aaBb、AAbb、Aabb和aabb,故A、B、C项错误,D项正确。‎ ‎3.(1)黄体(或黄色) aaBB ‎(2)红眼黑体 aabb ‎ ‎(3)全部为红眼黄体 ‎[解析] (1)分析题意可知,现以红眼黄体鳟鱼和黑眼黑体鳟鱼为亲本进行杂交,正交和反交的结果相同,说明控制这两对性状的基因均位于常染色体上;由于F1均为黑眼黄体,因此在体表颜色性状中黄体为显性性状;亲本中的红眼黄体鳟鱼的基因型为aaBB。‎ ‎(2)分析题意可知,这两对等位基因的遗传符合自由组合定律,因此理论上F2的表现型比例为9∶3∶3∶1;因此还应该出现红眼黑体(aabb)性状的个体;但实际并未出现,其可能的原因是基因型为aabb的个体本该表现红眼黑体,却表现为黑眼黑体。‎ ‎(3)分析题意可知,当(2)中的假设成立时,用亲本中红眼黄体(aaBB)与F2中的黑眼黑体(A_bb、aabb)杂交,就可能出现有一个杂交组合(aaBB×aabb)的后代全部为红眼黄体(aaBb)。‎ ‎【2020预测】‎ ‎1.D [解析] 由题意“G或D纯合时有致死效应”可知,不可能找到黏胶眼的纯合品系(GG)和展翅的纯合品系(DD),A错误;分别寻找黏胶眼的杂合品系(Ggdd)和展翅的杂合品系(ggDd)并独立繁殖保留,可以保留这两种品系,但是在繁殖过程中会发生性状分离,并且会出现显性纯合致死个体,B错误;选择既非黏胶眼又非展翅的隐性纯合品系(ggdd),与黏胶眼杂合品系(Ggdd)和展翅杂合品系(ggDd)分别杂交并保留,可以达到保留目标品系的效果,但是后代会出现隐性纯合个体,C错误;寻找既为黏胶眼又为展翅且两个显性基因不在同一条Ⅲ号染色体上的品系,该品系个体的基因型为GgDd,产生的配子类型为Gd、gD,让它们相互杂交,子代存活下来的个体的基因型均为GgDd,表现型均为黏胶眼展翅,最适合长期保留,D正确。‎ ‎2.(1)套袋→人工授粉 ‎(2)独立遗传,F2植株的表现型说明高茎∶矮茎=3∶1,紫花∶白花=15∶1,只有三对等位基因分别位于三对同源染色体上(或三对等位基因独立遗传),F2植株才会出现高茎紫花∶矮茎紫花∶高茎白花∶矮茎白花=45∶15∶3∶1的情况 ‎(3)16‎ ‎(4)让矮茎紫花植株分别自交,其子代不发生性状分离的植株即为能稳定遗传的矮茎紫花植株 ‎[解析] (1)杂交实验的操作流程为雌株去雄→套袋→人工授粉→套袋。(2)根据题干中的杂交实验及结果分析可知,F2中高茎紫花∶矮茎紫花∶高茎白花∶矮茎白花=45∶15∶3∶1,则高茎∶矮茎=3∶1,紫花∶白花=15∶1(是9∶3∶3∶1的变形),说明花色是由位于两对同源染色体上的两对等位基因控制的,且这两对等位基因与控制茎高度的基因分别位于三对同源染色体上,即三对等位基因独立遗传。(3)可将两对相对性状分开考虑。若只考虑茎的高度,F1为杂合子(设为Aa),则F2中的高茎植株的基因型有AA和Aa 2种;若只考虑花色,F1为双杂合子(设为BbCc),则F2中的紫花植株的基因型有9-1=8(种)(F2中只有基因型为bbcc的植株表现为白花);两对相对性状综合考虑,理论上,F2中的高茎紫花植株的基因型共有2×8=16(种)。(4)欲从F2的矮茎紫花植株中获得能稳定遗传的个体,最简单的方法就是自交,即让矮茎紫花植株分别自交,其子代不发生性状分离的植株即为能稳定遗传的矮茎紫花植株。‎ 拓展微课 数学方法在遗传规律解题中的运用 ‎【专题讲解·破难点】‎ 例1 CcRr ‎[解析] 子代红花占3/8,即子代基因型C_R_比例为3/8,由于另一亲本基因型为ccRr,可分解成×,依据×中的可知亲本为Cc×cc,依据×中的可知亲本为Rr×Rr,综合考虑,亲本的红花香豌豆基因型是CcRr。‎ 例2 C [解析] 子代表现型有直毛黑色、卷毛黑色、直毛白色和卷毛白色,并且它们之间的比例为3∶3∶1∶1,先单独统计毛形可知直毛∶卷毛=1∶1,推理出亲代基因型为Bb×bb;再单独统计毛色可知黑毛∶白毛=3∶1,推理出亲代基因型为Cc×Cc;综合考虑“个体X”的基因型是bbCc。‎ 例3 B [解析] 基因型为WwYy的个体自交,子代有9W_Y_、3W_yy、3wwY_、1wwyy,再根据黄皮基因(Y)对绿皮基因(y)为显性,但在另一白色显性基因(W)存在时,基因Y和y都不能表达,合并同类项9W_Y_和3W_yy为12,则子代表现型种类及比例为3种,12∶3∶1。‎ 例4 16 16 65‎ 例5 B [解析] 分析题意可知,在F2植株开花前,拔掉所有的有芒植株,这一处理对F2抗病与感病的比例没有影响,因此该题实际上是一个分离定律的问题,F1抗病杂合子连续自交两次得F3植株,F3植株中感病植株占1/2×[1-(1/2)2]=3/8。 ‎ 例6 WwYy和wwYy ‎[解析] 首先根据亲代表现型可初步确定亲本的基因型为W___×wwY_,由子代白果皮∶黄果皮∶绿果皮=4∶3∶1,可知子代组合数为(4+3+1)=8(种),这要求一个亲本产生4种配子,另一个亲本产生2种配子,所以亲本的基因型为WwYy和wwYy。‎ 例7 B [解析] 根据二项式定理,1对等位基因杂合、6对等位基因纯合的个体出现的概率为(1/2)1(1/2)6=7/128,A错误。5对等位基因杂合、2对等位基因纯合的个体出现的概率为(1/2)2(1/2)5=21/128,C错误。7对等位基因纯合的个体与7对等位基因杂合的个体出现的概率相等,均为1/128,D错误。‎ 例8 亲本的基因型为AABBCCDD和aabbccdd,子一代的基因型为AaBbCcDd ‎[解析] F2中红花个体(A_B_……)占全部个体的比例为81/(81+175)=81/256=(3/4)4,由此可知,红花和白花由4对等位基因控制,F1红花的基因型为AaBbCcDd,进而推知亲本的基因型为AABBCCDD和aabbccdd。‎ 例9 AACCdd和AaccDD 或AaCCdd和AAccDD ‎[解析] 根据亲本的表现型和F1全部为紫色(A_C_D_),可推知亲代两株古铜色玉米的基因型为A_CCdd和A_ccDD;假设F1全部为AaCcDd,则F2中紫色占27/64;假设F1全部为AACcDd,则F2中紫色占9/16;两种假设与F2中紫色占63/128都不符,因此可推知F1紫色的基因型不是一种,而有两种,进一步可推知亲代关于A、a基因的基因组成中有一对纯合、一对杂合。综上所述,这两株古铜色玉米的基因型为AACCdd和AaccDD 或AaCCdd和AAccDD。‎ ‎【跟踪训练·当堂清】‎ ‎1.D [解析] 杂交后代中白粒所占比例为1/64,即1/4×1/4×1/4×1或1/4×1/4×1/2×1/2,A、B、C项均不符合题意。亲本杂交组合为AaBbccdd×aaBbCcDd时,后代出现白粒的比例为1/2×1/4×1/2×1/2=1/32,D项符合题意。‎ ‎2.C [解析] 由甲组的杂交结果可推知:高产为显性性状,低产为隐性性状,A正确;控制高产和低产的基因为不同的有遗传效应的DNA片段,因此二者的碱基排列顺序不同,B正确;假设高产由基因M控制,低产由基因m控制,甲组的杂交子代高产∶低产=7∶1,即杂交子代低产的比例是1/8,说明亲本高产植株产生m配子的比例是1/8,进而推知甲组高产亲本中杂合个体的比例是1/4,C错误;甲组高产亲本中,只有杂合个体(Mm)自交才能产生低产子代(mm)个体,因为甲组高产亲本中Mm的比例是1/4,所以自交产生的低产子代个体的比例为1/4×1/4=1/16,D正确。‎ ‎3.C [解析] 亲代杂交,子代中高茎∶矮茎=3∶1,则双亲基因型为Tt×Tt;腋生花∶顶生花=1∶1,则双亲基因型为Aa×aa,故双亲的基因型为TtAa×Ttaa。茎的高矮与花的位置是两对相对性状。F1中两对基因均为纯合子的概率为1/2×1/2=1/4,两对性状均为隐性的概率为1/4×1/2=1/8。F1中高茎腋生花的基因型可能为TTAa或TtAa。‎
查看更多

相关文章

您可能关注的文档