【数学】2021届一轮复习人教A版(文)第十二章 第4讲 直接证明与间接证明作业

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【数学】2021届一轮复习人教A版(文)第十二章 第4讲 直接证明与间接证明作业

第4讲 直接证明与间接证明 ‎[基础题组练]‎ ‎1.(2020·衡阳示范高中联考(二))用反证法证明某命题时,对结论:“自然数a,b,c中恰有一个是偶数”的正确假设为(  )‎ A.自然数a,b,c中至少有两个偶数 B.自然数a,b,c中至少有两个偶数或都是奇数 C.自然数a,b,c都是奇数 D.自然数a,b,c都是偶数 解析:选B.“自然数a,b,c中恰有一个是偶数”说明有且只有一个是偶数,其否定是“自然数a,b,c均为奇数或自然数a,b,c中至少有两个偶数”.‎ ‎2.分析法又称执果索因法,已知x>0,用分析法证明<1+时,索的因是(  )‎ A.x2>2 B.x2>4 ‎ C.x2>0 D.x2>1‎ 解析:选C.因为x>0,所以要证<1+,只需证()2<,即证0<,即证x2>0,显然x2>0成立,故原不等式成立.‎ ‎3.在△ABC中,sin Asin C<cos Acos C,则△ABC一定是(  )‎ A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定 解析:选C.由sin Asin C<cos Acos C得 cos Acos C-sin Asin C>0,‎ 即cos(A+C)>0,所以A+C是锐角,‎ 从而B>,故△ABC必是钝角三角形.‎ ‎4.已知函数f(x)=,a,b是正实数,A=f,B=f(),C=f,则A,B,C的大小关系为(  )‎ A.A≤B≤C B.A≤C≤B C.B≤C≤A D.C≤B≤A 解析:选A.因为≥≥,又f(x)=在R上是减函数,所以f≤f( ‎)≤f,即A≤B≤C.‎ ‎5.设f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,若x1+x2>0,则f(x1)+f(x2)的值(  )‎ A.恒为负值 B.恒等于零 C.恒为正值 D.无法确定正负 解析:选A.由f(x)是定义在R上的奇函数,且当x≥0时,f(x)单调递减,可知f(x)是R上的单调递减函数,‎ 由x1+x2>0,可知x1>-x2,f(x1)1且+≥-2,则下列结论成立的是(  )‎ A.a,b,c同号 B.b,c同号,a与它们异号 C.a,c同号,b与它们异号 D.b,c同号,a与b,c的符号关系不确定 解析:选A.由·>1知与同号,‎ 若>0且>0,不等式+≥-2显然成立,‎ 若<0且<0,则->0,->0,‎ +≥2 >2,即+<-2,‎ 这与+≥-2矛盾,故>0且>0,即a,b,c同号.‎ ‎2.(应用型)(一题多解)若二次函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]内至少存在一点c,使f(c)>0,则实数p的取值范围是 .‎ 解析:法一(补集法):f(x)在区间[-1,1]内至少存在一点c.使f(c)>0,该结论的否定是对于区间[-1,1]内的任意一点c,都有f(c)≤0,‎ 令解得p≤-3或p≥,‎ 故满足条件的p的取值范围为.‎ 法二(直接法):依题意有f(-1)>0或f(1)>0,‎ 即2p2-p-1<0或2p2+3p-9<0,‎ 得-<p<1或-3<p<,‎ 故满足条件的p的取值范围是.‎ 答案: ‎3.已知二次函数f(x)=ax2+bx+c(a>0)的图象与x轴有两个不同的交点,若f(c)=0,且00.‎ ‎(1)证明:是f(x)=0的一个根;‎ ‎(2)试比较与c的大小.‎ 解:(1)证明:因为f(x)的图象与x轴有两个不同的交点,‎ 所以f(x)=0有两个不等实根x1,x2,‎ 因为f(c)=0,‎ 所以x1=c是f(x)=0的根,‎ 又x1x2=,‎ 所以x2=,‎ 所以是f(x)=0的一个根.‎ ‎(2)假设0,‎ 由00,‎ 知f>0与f=0矛盾,‎ 所以≥c,又因为≠c,所以>c.‎ ‎4.(综合型)若f(x)的定义域为[a,b],值域为[a,b](a<b),则称函数f(x)是[a,b]上的“四维光军”函数.‎ ‎(1)设g(x)=x2-x+是[1,b]上的“四维光军”函数,求常数b的值;‎ ‎(2)是否存在常数a,b(a>-2),使函数h(x)=是区间[a,b]上的“四维光军”函数?若存在,求出a,b的值;若不存在,请说明理由.‎ 解:(1)由已知得g(x)=(x-1)2+1,其图象的对称轴为x=1,‎ 所以函数在区间[1,b]上单调递增,由“四维光军”函数的定义可知 ,g(1)=1,g(b)=b,‎ 即b2-b+=b,‎ 解得b=1或b=3.‎ 因为b>1,所以b=3.‎ ‎(2)假设函数h(x)=在区间[a,b](a>-2)上是“四维光军”函数,‎ 因为h(x)=在区间(-2,+∞)上单调递减,‎ 所以有即 解得a=b,这与已知矛盾.故不存在.‎
查看更多

相关文章

您可能关注的文档