2020高中数学 课时分层作业16 数学归纳法 新人教A版选修2-2
课时分层作业(十六) 数学归纳法
(建议用时:40分钟)
[基础达标练]
一、选择题
1.用数学归纳法证明3n≥n3(n≥3,n∈N*),第一步验证( )
A.n=1 B.n=2
C.n=3 D.n=4
C [由题知,n的最小值为3,所以第一步验证n=3是否成立.]
2.设Sk=+++…+,则Sk+1为( )
A.Sk+ B.Sk++
C.Sk+- D.Sk+-
C [因式子右边各分数的分母是连续正整数,则由Sk=++…+,①
得Sk+1=++…+++.②
由②-①,得Sk+1-Sk=+-
=-.
故Sk+1=Sk+-.]
3.利用数学归纳法证明不等式1+++…+<n(n≥2,n∈N*)的过程中,由n=k变到n=k+1时,左边增加了( )
【导学号:31062168】
A.1项 B.k项
C.2k-1项 D.2k项
D [当n=k时,不等式左边的最后一项为,而当n=k+1时,最后一项为=,并且不等式左边和分母的变化规律是每一项比前一项加1,故增加了2k项.]
4.对于不等式≤n+1(n∈N+),某学生的证明过程如下:
(1)当n=1时,≤1+1,不等式成立.
5
(2)假设n=k(k∈N*)时,不等式成立,即
2的自然数n都成立
B.该命题对于所有的正偶数都成立
C.该命题何时成立与k取值无关
D.以上答案都不对
B [由n=k时命题成立可以推出n=k+2时命题也成立.且n=2,故对所有的正偶数都成立.]
二、填空题
6.用数学归纳法证明“2n+1≥n2+n+2(n∈N*)”时,第一步的验证为________.
[解析] 当n=1时,左≥右,不等式成立,
∵n∈N*,
∴第一步的验证为n=1的情形.
[答案] 当n=1时,左边=4,右边=4,左≥右,不等式成立
7.用数学归纳法证明(1+1)(2+2)(3+3)…(n+n)=2n-1·(n2+n)时,从n=k到n=k+1左边需要添加的因式是________.
【导学号:31062170】
[解析] 当n=k时,左端为:(1+1)(2+2)…(k+k),
当n=k+1时,
左端为:(1+1)(2+2)…(k+k)(k+1+k+1),
由k到k+1需添加的因式为:(2k+2).
[答案] 2k+2
8.数列{an}中,已知a1=2,an+1=(n∈N*),依次计算出a2,a3,a4后,归纳、猜测得出an的表达式为________.
5
[解析] a1=2,a2=,a3=,a4=,猜测an=.
[答案] an=
三、解答题
9.(1)用数学归纳法证明:
12-22+32-42+…+(-1)n-1n2=(-1)n-1·(n∈N*).
(2)求证:12-22+32-42+…+(2n-1)2-(2n)2=-n(2n+1)(n∈N*).
[解] (1)①当n=1时,左边=12=1,
右边=(-1)0×=1,
左边=右边,等式成立.
②假设n=k(k∈N*)时,等式成立,即
12-22+32-42+…+(-1)k-1k2
=(-1)k-1·.
则当n=k+1时,
12-22+32-42+…+(-1)k-1k2+(-1)k(k+1)2
=(-1)k-1·+(-1)k(k+1)2
=(-1)k(k+1)·
=(-1)k·.
∴当n=k+1时,等式也成立,
根据①、②可知,对于任何n∈N*等式成立.
(2)①n=1时,左边=12-22=-3,右边=-3,等式成立.
②假设n=k时,等式成立,即12-22+32-42+…+(2k-1)2-(2k)2=-k(2k+1)2.
当n=k+1时,12-22+32-42+…+(2k-1)2-(2k)2+(2k+1)2-(2k+2)2=-k(2k+1)+(2k+1)2-(2k+2)2=-k(2k+1)-(4k+3)=-(2k2+5k+3)=-(k+1)[2(k+1)+1],所以n=k+1时,等式也成立.
由①②得,等式对任何n∈N*都成立.
10.已知{fn(x)}满足f1(x)=(x>0),fn+1(x)=f1(fn(x)).
(1)求f2(x),f3(x),并猜想fn(x)的表达式;
(2)用数学归纳法证明对fn(x)的猜想.
5
【导学号:31062171】
[解] (1)f2(x)=f1[f1(x)]==,
f3(x)=f1[f2(x)]==
猜想:fn(x)=,(n∈N*)
(2)下面用数学归纳法证明 ,fn(x)=(n∈N*)
①当n=1时,f1(x)=,显然成立;
②假设当n=k(k∈N*)时,猜想成立,即fk(x)=,
则当n=k+1时,fk+1=f1[fk(x)]==,
即对n=k+1时,猜想也成立;
结合①②可知,猜想fn(x)=对一切n∈N*都成立.
[能力提升练]
1.利用数学归纳法证明+++…+<1(n∈N*,且n≥2)时,第二步由k到k+1时不等式左端的变化是( )
A.增加了这一项
B.增加了和两项
C.增加了和两项,同时减少了这一项
D.以上都不对
C [不等式左端共有n+1项,且分母是首项为n,公差为1,末项为2n的等差数列,当n=k时,左端为+++…+;当n=k+1时,左端为+++…+++,对比两式,可得结论.]
2.某命题与自然数有关,如果当n=k(k∈N*)时该命题成立,则可推得n=k+1时该命题也成立,现已知当n=5时该命题不成立,则可推得( )
【导学号:31062172】
5
A.当n=6时,该命题不成立
B.当n=6时,该命题成立
C.当n=4时,该命题不成立
D.当n=4时,该命题成立
C [若n=4时,该命题成立,由条件可推得n=5命题成立.
它的逆否命题为:若n=5不成立,则n=4时该命题也不成立.]
3.记凸k边形的内角和为f(k),则凸k+1边形的内角和f(k+1)=f(k)+________.
[解析] 由凸k边形变为凸k+1边形时,增加了一个三角形图形,
故f(k+1)=f(k)+π.
[答案] π
4.对任意n∈N*,34n+2+a2n+1都能被14整除,则最小的自然数a=________.
【导学号:31062173】
[解析] 当n=1时,36+a3能被14整除的数为a=3或5;当a=3且n=2时,310+35不能被14整除,故a=5.
[答案] 5
5.是否存在a,b,c使等式2+2+2+…+2=对一切n∈N*都成立,若不存在,说明理由;若存在,用数学归纳法证明你的结论.
[解] 取n=1,2,3可得,解得:a=,b=,c=.
下面用数学归纳法证明2+2+2+…+2==.
即证12+22+…+n2=n(n+1)(2n+1),
①n=1时,左边=1,右边=1,∴等式成立;
②假设n=k时等式成立,即12+22+…+k2=k(k+1)(2k+1)成立,
则当n=k+1时,等式左边=12+22+…+k2+(k+1)2=k(k+1)(2k+1)+(k+1)2=[k(k+1)(2k+1)+6(k+1)2]=(k+1)(2k2+7k+6)=(k+1)(k+2)(2k+3),∴当n=k+1时等式成立;
由数学归纳法,综合①②当n∈N*等式成立,
故存在a=,b=,c=使已知等式成立.
5