【数学】2020届一轮复习人教A版基本不等式的应用课时作业

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

【数学】2020届一轮复习人教A版基本不等式的应用课时作业

‎2020届一轮复习人教A版 基本不等式的应用 课时作业 ‎1.【江苏省苏锡常镇2019届高三教学情况调研数学试题】已知,,且,则的最小值是____________.‎ ‎【答案】‎ ‎【解析】∵ ,‎ 当且仅当时取等号.‎ 因此的最小值是 ‎2.【江苏省徐州市(苏北三市(徐州、淮安、连云港))2019届高三年级第一次质量检测数学试题】已知,,且,则的最大值为____________.‎ ‎【答案】‎ ‎【解析】化为,即,‎ 解得:,‎ 所以的最大值为.‎ 故答案为.‎ ‎3.【江苏省南通市2019届高三年级阶段性学情联合调研数学试题】设,向量a , ,若,则的最小值为____________.‎ ‎【答案】9‎ ‎【解析】因为,所以4x+(1﹣x)y=0,‎ 又x>0,y>0,所以+=1,‎ 故x+y=(+)(x+y)=5++≥9.‎ 当且仅当=,+=1同时成立,即x=3,y=6时,等号成立.‎ 则(x+y)min=9.‎ 故答案为9.‎ ‎4.【江苏省镇江市2019届高三考前模拟(三模)数学试题】在等腰中,,,则面积的最大值为____________.‎ ‎【答案】4‎ ‎【解析】以为轴,以的垂直平分线为轴,设,,,‎ ‎,,‎ ‎,‎ ‎,‎ ‎,‎ ‎,‎ 当且仅当,即时等号成立,‎ ‎,‎ ‎,‎ 则面积的最大值为4.‎ 故答案为4.‎ ‎5.【江苏省苏锡常镇四市2019届高三教学情况调查(二)数学试题】已知正实数,b满足+b=1,则的最小值为____________.‎ ‎【答案】11‎ ‎【解析】因为,且都是正实数,‎ 所以 ‎,‎ 当且仅当时,等号成立.‎ 所以的最小值为.‎ ‎6.【江苏省扬州市2019届高三第一学期期末检测数学试题】已知正实数,满足,若恒成立,则实数的取值范围为____________.‎ ‎【答案】‎ ‎【解析】由题意知x+4y﹣xy=0,即x+4y=xy,等式两边同时除以xy得,‎ 由基本不等式可得,‎ 当且仅当,即当x=2y=6时,等号成立,‎ 所以,x+y的最小值为9.‎ 因此,m≤9.‎ 故答案为.‎ ‎7.【天津市部分区2019年高三质量调查数学试题】已知的内角A,B,C的对边分别为a,b,c,,,则周长的最大值是____________.‎ ‎【答案】‎ ‎【解析】因为,‎ 所以,‎ 当且仅当时取等号,‎ 因此,‎ 故周长的最大值是 ‎8.【天津市南开区南开中学2019届高三第五次月考数学试题】已知直线被圆截得的弦长为,则的最大值为____________.‎ ‎【答案】‎ ‎【解析】圆可化为,‎ 则圆心为,半径为, 又因为直线被圆截得的弦长为, 所以直线过圆心,即,‎ 即, ,当且仅当时取等号, 的最大值为.‎ 故答案为.‎ ‎9.【河南省名校联考2019届高三联考(四)数学试题】已知的内角,,的对边分别为,,,且满足.若,则当取得最小值时,的外接圆的半径为____________.‎ ‎【答案】‎ ‎【解析】由正弦定理得,‎ 由余弦定理得,‎ 即当时,取得最小值为,‎ 此时,‎ 设外接圆半径为,‎ 由正弦定理得,解得.‎ 故当取得最小值时,的外接圆的半径为.‎ ‎10.【天津市河北区2019届高三二模数学试题】已知首项与公比相等的等比数列中,,,满足,则的最小值为____________.‎ ‎【答案】1‎ ‎【解析】设等比数列的公比为,则首项,‎ 由得,‎ 则,,‎ ‎,‎ ‎,,‎ 则(当且仅当,即时取等号),‎ ‎.‎ 故答案为1.‎ ‎11.【江西省临川一中2019届高三年级考前模拟考试数学试题】如图,点在的边上,且,,,则的最大值为____________.‎ ‎【答案】‎ ‎【解析】因为,‎ 所以,‎ 因为,所以,即,‎ 整理得到,‎ 两边平方后有,‎ 所以,‎ 即,‎ 整理得到,‎ 设,‎ 所以,‎ 因为,‎ 所以,‎ 则,‎ 当且仅当,时等号成立,‎ 故答案为.‎
查看更多

相关文章

您可能关注的文档